Simulated annealing for airborne EM inversion

The traditional algorithms for airborne electromagnetic (EM) inversion, e.g., the Marquardt-Levenberg method, generally run only a downhill search. Consequently, the model solutions are strongly dependent on the starting model and are easily trapped in local minima. Simulated annealing (SA) starts from the Boltzmann distribution and runs both downhill and uphill searches, rendering the searching process to easily jump out of local minima and converge to a global minimum. In the SA process, the calculation of Jacobian derivatives can be avoided because no preferred searching direction is required as in the case of the traditional algorithms. We apply SA technology for airborne EM inversion by comparing the inversion with a thermodynamic process, and we discuss specifically the SA procedure with respect to model configuration, random walk for model updates, objective function, and annealing schedule. We demonstrate the SA flexibility for starting models by allowing the model parameters to vary in a large range (far away from the true model). Further, we choose a temperature-dependent random walk for model updates and an exponential cooling schedule for the SA searching process. The initial temperature for the SA cooling scheme is chosen differently for different model parameters according to their resolvabilities. We examine the effectiveness of the algorithm for airborne EM by inverting both theoretical and survey data and by comparing the results with those from the traditional algorithms.

[1]  R. H. J. M. Otten,et al.  The Annealing Algorithm , 1989 .

[2]  J. Szymański,et al.  The stochastic inversion of magnetics and resistivity data using the simulated annealing algorithm1 , 1995 .

[3]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[4]  Mrinal K. Sen,et al.  Use of VFSA for resolution, sensitivity and uncertainty analysis in 1D DC resistivity and IP inversion , 2003 .

[5]  Mrinal K. Sen,et al.  Bayesian inference, Gibbs' sampler and uncertainty estimation in geophysical inversion , 1996 .

[6]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[7]  Yuval,et al.  Computation of Cole-Cole parameters from IP data , 1997 .

[8]  L. Ingber Very fast simulated re-annealing , 1989 .

[9]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[10]  Mrinal K. Sen,et al.  2-D resistivity inversion using spline parameterization and simulated annealing , 1996 .

[11]  S. Sharma,et al.  A comparison of performances of linearized and global nonlinear 2-D inversions of VLF and VLF-R electromagnetic data , 2001 .

[12]  Nils Ryden,et al.  Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra , 2006 .

[13]  Mrinal K. Sen,et al.  Nonlinear inversion of resistivity sounding data , 1993 .

[14]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[15]  Xin-Quan Ma,et al.  Simultaneous inversion of prestack seismic data for rock properties using simulated annealing , 2002 .

[16]  Mrinal K. Sen,et al.  Nonlinear one-dimensional seismic waveform inversion using simulated annealing , 1991 .

[17]  Wafik B. Beydoun,et al.  Reference velocity model estimation from prestack waveforms: Coherency optimization by simulated annealing , 1989 .

[18]  S. Nagihara,et al.  Three‐dimensional gravity inversion using simulated annealing: Constraints on the diapiric roots of allochthonous salt structures , 2001 .

[19]  I. Roy An efficient non‐linear least‐squares 1D inversion scheme for resistivity and IP sounding data , 1999 .

[20]  Mrinal K. Sen,et al.  Inversion and uncertainty estimation of gravity data using simulated annealing: An application over Lake Vostok, East Antarctica , 2005 .

[21]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[22]  Douglas W. Oldenburg,et al.  Reconstruction of 1-D conductivity from dual-loop EM data , 2000 .

[23]  William H. Press,et al.  Numerical recipes , 1990 .

[24]  James Macnae,et al.  Conductivity-depth imaging of airborne electromagnetic step-response data , 1991 .

[25]  Robust 1D inversion and analysis of helicopter electromagnetic (HEM) data , 2006 .

[26]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[27]  Haoping Huang,et al.  Inversion of helicopter electromagnetic data to a magnetic conductive layered earth , 2003 .