Millimeter-wave MMICs and applications

As device technology improves, interest in the millimeter-wave band grows. Wireless communication systems migrate to higher frequencies, millimeter-wave radars and passive sensors find new solid-state implementations that promise improved performance, and entirely new applications in the millimeter-wave band become feasible. The circuit or system designer is faced with a new and unique set of challenges and constraints to deal with in order to use this portion of the spectrum successfully. In particular, the advantages of monolithic integration become increasingly important. This thesis presents many new developments in Monolithic Millimeter-Wave Integrated Circuits (MMICs), both the chips themselves and systems that use them. It begins with an overview of the various applications of millimeter waves, including a discussion of specific projects that the author is involved in and why many of them demand a MMIC implementation. In the subsequent chapters, new MMIC chips are described in detail, as is the role they play in real-world projects. Multi-chip modules are also presented with specific attention given to the practical details of MMIC packaging and multi-chip integration. The thesis concludes with a summary of the works presented thus far and their overall impact on the field of millimeter-wave engineering.

[1]  Linda P. B. Katehi,et al.  W-band finite ground coplanar monolithic multipliers , 1999 .

[2]  S. Weinreb,et al.  Octave-bandwidth high-directivity microstrip codirectional couplers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[3]  P. Petre,et al.  W-band InP HEMT MMICs using finite-ground coplanar waveguide (FGCPW) design , 1999 .

[4]  S. Weinreb,et al.  Full band waveguide-to-microstrip probe transitions , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[5]  M. Fernandez-Barciela,et al.  An optimized 25.5-76.5 GHz PHEMT-based coplanar frequency tripler , 2000, IEEE Microwave and Guided Wave Letters.

[6]  Antti V. Räisänen,et al.  Frequency multipliers for millimeter and submillimeter wavelengths , 1992, Proc. IEEE.

[7]  S. Uysal Nonuniform Line Microstrip Directional Couplers and Filters , 1993 .

[8]  E. M. Jones,et al.  Microwave Filters, Impedance-Matching Networks, and Coupling Structures , 1980 .

[9]  G. S. Dow,et al.  A W-band monolithic downconverter , 1991 .

[10]  F. R. Phelleps,et al.  A high-performance 94-GHz MMIC doubler , 1993 .

[11]  Huei Wang,et al.  120 and 60 GHz monolithic InP-based HEMT diode sub-harmonic mixer , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[12]  R. P. Meys,et al.  Review and discussion of stability criteria for linear 2-ports , 1990 .

[13]  T. Gaier,et al.  A W-band GCPW MMIC Diode Tripler , 2002, 2002 32nd European Microwave Conference.

[14]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[15]  Stephen A. Maas,et al.  Nonlinear microwave circuits , 1988 .

[16]  J. Zyl,et al.  Introduction to the Physics and Techniques of Remote Sensing , 2006 .

[17]  J. Lange,et al.  Noise Characterization of Linear Twoports in Terms of Invariant Parameters , 1967 .

[18]  Y. C. Leong,et al.  Novel technique of phase velocity equalization for microstrip coupled-line phase shifters , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[19]  S. Weinreb,et al.  A full waveguide band MMIC tripler for 75-110 GHz , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[20]  S. Weinreb,et al.  A W-band monolithic medium power amplifier , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[21]  J. Rollett Stability and Power-Gain Invariants of Linear Twoports , 1962 .

[22]  S. Weinreb,et al.  A millimeter-wave perpendicular coax-to-microstrip transition , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[23]  Editor-H.P. Westman Reference Data for Radio Engineers , 1967 .

[24]  Amir Mortazawi,et al.  A high-power Ka-band quasi-optical amplifier array , 2002 .

[25]  Wolfgang Menzel A 140 GHz Balanced Mixer for Finline Integrated Circuits , 1983, 1983 13th European Microwave Conference.

[26]  L. Samoska,et al.  On the stability of millimeter-wave power amplifiers , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[27]  Lorene Samoska,et al.  High-gain 150-215-GHz MMIC amplifier with integral waveguide transitions , 1999 .

[28]  H. Fudem,et al.  Novel millimeter wave active MMIC triplers , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[29]  B. Allen,et al.  A 180-GHz monolithic sub-harmonic InP-based HEMT diode mixer , 1999, IEEE Microwave and Guided Wave Letters.

[30]  B. Neri,et al.  Criteria for the evaluation of unconditional stability of microwave linear two-ports: a critical review and new proof , 1999 .

[31]  Herbert Zirath,et al.  InP HEMT-based, cryogenic, wideband LNAs for 4-8 GHz operating at very low DC-power , 2002, Conference Proceedings. 14th Indium Phosphide and Related Materials Conference (Cat. No.02CH37307).

[32]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[33]  Y.C. Chen,et al.  A 427 mW, 20% compact W-band InP HEMT MMIC power amplifier , 1999, 1999 IEEE Radio Frequency Integrated Circuits Symposium (Cat No.99CH37001).

[34]  K. Chang,et al.  Wideband microstrip balanced mixer , 1987 .

[35]  Joel N. Schulman,et al.  New tunnel diode for zero-bias direct detection for millimeter-wave imagers , 2001, SPIE Defense + Commercial Sensing.

[36]  V. Radisic,et al.  164-GHz MMIC HEMT doubler , 2001, IEEE Microwave and Wireless Components Letters.

[37]  N.R. Erickson High performance dual directional couplers for near-mm wavelengths , 2001, IEEE Microwave and Wireless Components Letters.

[38]  S. Weinreb,et al.  A monolithic HEMT diode balanced mixer for 100-140 GHz , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[39]  H. G. Henry,et al.  A 94 GHz MMIC tripler using anti-parallel diode arrays for idler separation , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[40]  Ali Hajimiri,et al.  The class-E/F family of ZVS switching amplifiers , 2003 .

[41]  S. Weinreb,et al.  A MMIC-based 75-110 GHz signal source , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[42]  M. Pospieszalski Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence , 1989 .