Chapter VI Dopamine systems in the primate brain

Publisher Summary This chapter reviews the characteristic features of the major population of dopamine (DA)—containing neurons located in the mesencephalon of the primate brain. Although DA is utilized as a neurotransmitter by only an extremely small fraction of neurons in the primate brain, it exerts a critical influence over a large number of brain functions and behaviors, ranging from complex higher cognitive abilities to motor control. In addition, DA is a central element in the pathophysiology of a number of human disease states, including schizophrenia, drug addiction, and Parkinson's disease. The chapter focuses on the distribution, chemical features, and afferent input to DA neurons in the mesencephalon of monkeys and humans; on the organization of their major axonal projections to the basal ganglia, limbic regions, and cerebral cortex, and on the development of these systems. In addition, alterations in the DA systems in schizophrenia and Parkinson's disease are discussed.

[1]  J. Rinne,et al.  Positron emission tomography demonstrates dopamine D2 receptor supersensitivity in the striatum of patients with early Parkinson's disease , 1990, Movement disorders : official journal of the Movement Disorder Society.

[2]  H. Kinney,et al.  Three‐dimensional distribution of 3H‐Naloxone binding to opiate receptors in the human fetal and infant brainstem , 1990, The Journal of comparative neurology.

[3]  A. Parent,et al.  Distribution of enkephalin-immunoreactive neurons in the forebrain and upper brainstem of the squirrel monkey , 1985, Brain Research.

[4]  Christer Halldin,et al.  Dopamine D2 receptors in the rat, monkey and the post-mortem human hippocampus. An autoradiographic study using the novel D2-selective ligand 125I-NCQ 298 , 1991, Neuroscience Letters.

[5]  D L Price,et al.  Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[6]  D. Amaral,et al.  An autoradiographic study of the projections of the central nucleus of the monkey amygdala , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  J. Marcusson,et al.  High affinity [3H]paroxetine binding to serotonin uptake sites in human brain tissue , 1989, Brain Research.

[8]  D. Brooks,et al.  Striatal D1 and D2 receptor binding in patients with Huntington's disease and other choreas. A PET study. , 1995, Brain : a journal of neurology.

[9]  D. Jacobowitz,et al.  Hemiparkinsonism in a monkey after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is associated with regional ipsilateral changes in striatal dopamine D-2 receptor density , 1986, Brain Research.

[10]  P. Goldman-Rakic,et al.  In vivo assessment of basal and drug‐induced dopamine release in cortical and subcortical regions of the anesthetized primate , 1993, Synapse.

[11]  C. Köhler,et al.  Autoradiographic visualization of dopamine D-2 receptors in the monkey brain using the selective benzamide drug [3H]raclopride , 1986, Neuroscience Letters.

[12]  B. Berger,et al.  Catecholaminergic innervation of the septal area in man: Immunocytochemical study using TH and DBH antibodies , 1985, The Journal of comparative neurology.

[13]  P. Somogyi,et al.  Synaptic connections, axonal and dendritic patterns of neurons immunoreactive for cholecystokinin in the visual cortex of the cat , 1986, Neuroscience.

[14]  P. Goldman-Rakic,et al.  Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. , 1993, Cerebral cortex.

[15]  H. Fibiger,et al.  ACETYLCHOLINESTERASE IN THE SUBSTANTIA NIGRA AND CAUDATE‐PUTAMEN OF THE RAT: PROPERTIES AND LOCALIZATION IN DOPAMINERGIC NEURONS , 1978, Journal of neurochemistry.

[16]  Gender,et al.  Age-related dopamine-dependent disorders , 1995 .

[17]  M A Hofman,et al.  Effects of neonatal thermal lesioning of the mesocortical dopaminergic projection on the development of the rat prefrontal cortex. , 1987, Brain research.

[18]  B. Bloch,et al.  D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum , 1995, The Journal of comparative neurology.

[19]  L. Iversen,et al.  Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia. , 1979, Brain : a journal of neurology.

[20]  P. Mcgeer,et al.  Autoradiographic study on dopamine uptake sites and their correlation with dopamine levels and their striata from patients with Parkinson disease, Alzheimer disease, and neurologically normal controls. , 1993, Molecular and chemical neuropathology.

[21]  S. Haber,et al.  Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: Comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity , 1995, The Journal of comparative neurology.

[22]  A. Parent,et al.  The subcortical afferents to caudate nucleus and putamen in primate: A fluorescence retrograde double labeling study , 1983, Neuroscience.

[23]  M. Wolf,et al.  Effect of Aging on Tyrosine Hydroxylase Protein Content and the Relative Number of Dopamine Nerve Terminals in Human Caudate , 1991, Journal of neurochemistry.

[24]  A. Parent,et al.  Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey , 1994, The Journal of comparative neurology.

[25]  D. Lewis The catecholaminergic innervation of primate prefrontal cortex. , 1992, Journal of neural transmission. Supplementum.

[26]  F. Carroll,et al.  Characterization and localization of [125I]RTI-121 binding sites in human striatum and medial temporal lobe. , 1995, The Journal of pharmacology and experimental therapeutics.

[27]  Wade K. Smith,et al.  Midbrain dopaminergic cell loss in parkinson's disease: Computer visualization , 1989, Annals of neurology.

[28]  Pasko Rakic,et al.  Differential quenching and limits of resolution in autoradiograms of brain tissue labeled with3H-,125I- and14C-compounds , 1988, Brain Research.

[29]  Philip Seeman,et al.  Dopamine D2 receptor density remains constant in treated Parkinson's disease , 1986, Annals of neurology.

[30]  Kisou Kubota,et al.  Catecholamine sensitivities of motor cortical neurons of the monkey , 1986, Neuroscience Letters.

[31]  M. Akil,et al.  Cortical dopamine in schizophrenia: strategies for postmortem studies. , 1997, Journal of psychiatric research.

[32]  P. Goldman-Rakic,et al.  Neurochemical development of the hippocampal region in the fetal rhesus monkey. I. Early appearance of peptides, calcium‐binding proteins, DARPP‐32, and monoamine innervation in the entorhinal cortex during the first half of gestation (E47 to E90) , 1993, Hippocampus.

[33]  N. Wilczak,et al.  [3H]Clozapine is not a suitable radioligand for the labelling of D4 dopamine receptors in postmortem human brain , 1994, Neuroscience Letters.

[34]  P. Yates,et al.  Lipoprotein pigments--their relationship to ageing in the human nervous system. II. The melanin content of pigmented nerve cells. , 1974, Brain : a journal of neurology.

[35]  H. B. M. Uylings,et al.  Morphometric analysis of prefrontal cortical development following neonatal lesioning of the dopaminergic mesocortical projection , 2004, Experimental Brain Research.

[36]  S. Aquilonius What has PET told us about Parkinson's disease? , 1991, Acta neurologica Scandinavica. Supplementum.

[37]  M Schulzer,et al.  Age‐dependent decline of nigrostriatal dopaminergic function: A positron emission tomographic study of grandparents and their grandchildren , 1994, Annals of neurology.

[38]  C. Geula,et al.  Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus , 1992, The Journal of comparative neurology.

[39]  S. Kish,et al.  Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. , 1988, The New England journal of medicine.

[40]  J. Palacios,et al.  Serotonin receptors in the human brain—III. Autoradiographic mapping of serotonin-1 receptors , 1987, Neuroscience.

[41]  L. Descarries,et al.  Distribution and Morphological Characteristics of Dopamine‐Immunoreactive Neurons in the Midbrain of the Squirrel Monkey (Saimiri sciureus) , 1988, The Journal of comparative neurology.

[42]  P. Goldman-Rakic,et al.  Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Vauquelin,et al.  [3H]GBR 12935 Binding to Dopamine Uptake Sites in the Human Brain , 1989, Journal of neurochemistry.

[44]  P. Bédard,et al.  Relation between brain dopamine loss and D2 dopamine receptor density in MPTP monkeys , 1988, Neuroscience Letters.

[45]  Jérôme Yelnik,et al.  A histological atlas of the macaque (Macaca, mulatta) substantia nigra in ventricular coordinates , 1985, Brain Research Bulletin.

[46]  A. Parent,et al.  Distribution of substance p and enkephalin-like immunoreactivity in the substantia nigra of rat, cat and monkey , 1984, Brain Research Bulletin.

[47]  J. Joyce,et al.  Dopamine D2 receptors in the hippocampus and amygdala in Alzheimer's disease , 1993, Neuroscience Letters.

[48]  L. Descarries,et al.  Ultrastructural basis of monoamine and acetylcholine function in CNS , 1995 .

[49]  N. Andén,et al.  Concentrations of dopamine and noradrenaline in some limbic and related regions of the human brain , 1982, Acta neurologica Scandinavica.

[50]  J. Kleinman,et al.  Age-related changes in [3H]GBR 12935 binding site density in the prefrontal cortex of controls and schizophrenics , 1995, Biological Psychiatry.

[51]  J. Palacios,et al.  Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: Brainstem , 1984, Neuroscience.

[52]  Daniel O'Connor,et al.  Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: Dopamine-β-hydroxylase immunohistochemistry , 1982, Brain Research Bulletin.

[53]  C. Saper,et al.  Correspondence of melanin-pigmented neurons in human brain with A1-A14 catecholamine cell groups. , 1982, Brain : a journal of neurology.

[54]  W. Mehler Subcortical afferent connections of the amygdala in the monkey , 1980, The Journal of comparative neurology.

[55]  A. Graybiel,et al.  The substantia nigra and its relations with the striatum in the monkey. , 1991, Progress in brain research.

[56]  E. Hirsch,et al.  Plasticity of nerve afferents to nigrostriatal neurons in parkinson's disease , 1995, Annals of neurology.

[57]  A. Parent,et al.  Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry , 1995, Brain Research Reviews.

[58]  F E Bloom,et al.  Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: an immunohistochemical study. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[59]  P. Goldman-Rakic,et al.  Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. , 1993, Cerebral cortex.

[60]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[61]  P. Seeman,et al.  Dopamine receptor pharmacology. , 1994, Trends in pharmacological sciences.

[62]  Y. Goshima,et al.  Transmitter‐Like Release of Endogenous 3,4‐Dihydroxyphenylalanine from Rat Striatal Slices , 1988, Journal of neurochemistry.

[63]  S. Haber,et al.  Primate striatonigral projections: A comparison of the sensorimotor‐related striatum and the ventral striatum , 1994, The Journal of comparative neurology.

[64]  A. Parent,et al.  The monoaminergic innervation of the amygdala in the squirrel monkey: An immunohistochemical study , 1990, Neuroscience.

[65]  A. Graybiel,et al.  Differences in tyrosine hydroxylase-like immunoreactivity characterize the mesostriatal innervation of striosomes and extrastriosomal matrix at maturity. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[66]  R. Saunders,et al.  Local pharmacological manipulation of extracellular dopamine levels in the dorsolateral prefrontal cortex and caudate nucleus in the rhesus monkey: An in vivo microdialysis study , 2004, Experimental Brain Research.

[67]  A. Parent,et al.  Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA‐L anterograde tracing method , 1990, The Journal of comparative neurology.

[68]  E. Irle,et al.  Afferent connections of the substantia innominata/basal nucleus of Meynert in carnivores and primates. , 1986, Journal fur Hirnforschung.

[69]  H. Slunt,et al.  Postnatal increases in neurofilament gene expression correlate with the radial growth of axons , 1991, Journal of neurocytology.

[70]  D. Lewis,et al.  Cholecystokinin- and dopamine-containing mesencephalic neurons provide distinct projections to monkey prefrontal cortex , 1992, Neuroscience Letters.

[71]  C. Tanaka,et al.  [3H]GBR-12935 binding sites in human striatal membranes: binding characteristics and changes in parkinsonians and schizophrenics. , 1988, Japanese journal of pharmacology.

[72]  A. Parent,et al.  Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey , 1990, The Journal of comparative neurology.

[73]  P. Rakić,et al.  Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. , 1989, Brain research. Developmental brain research.

[74]  M. Ishikawa,et al.  Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain , 1982, Brain Research Bulletin.

[75]  A. Parent,et al.  Evidence for a distinct nigropallidal dopaminergic projection in the squirrel monkey , 1989, Brain Research.

[76]  B. Kosofsky,et al.  Substance P and substance P receptor histochemistry in human neurodegenerative diseases , 1992, Regulatory Peptides.

[77]  E. Pioro,et al.  Loss of substance P and Enkephalin immunoreactivity in the human substantia nigra after striato-pallidal infarction , 1984, Brain Research.

[78]  J. Féger,et al.  Identification of different subpopulations of neostriatal neurones projecting to globus pallidus or substantia nigra in the monkey: A retrograde fluorescence double-labelling study , 1984, Neuroscience Letters.

[79]  B. Berger,et al.  Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: A radioautographic study , 1988, The Journal of comparative neurology.

[80]  G. Sedvall,et al.  Distribution of messenger RNAs for D1 dopamine receptors and DARPP-32 in striatum and cerebral cortex of the cynomolgus monkey: Relationship to D1 dopamine receptors , 1995, Neuroscience.

[81]  J. S. Schneider,et al.  Relative sparing of the dopaminergic innervation of the globus pallidus in monkeys made hemi-parkinsonian by intracarotid MPTP infusion , 1991, Brain Research.

[82]  C. Markham,et al.  Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP , 1987, Brain Research.

[83]  K. Davis,et al.  Dopamine in schizophrenia: a review and reconceptualization. , 1991, The American journal of psychiatry.

[84]  P. Goldman-Rakic,et al.  Modulation of memory fields by dopamine Dl receptors in prefrontal cortex , 1995, Nature.

[85]  J. De Keyser,et al.  Age‐related changes in the human nigrostriatal dopaminergic system , 1990, Annals of neurology.

[86]  J. Morrison,et al.  Heterogeneous distribution of D1, D2 and D5 receptor mRNAs in monkey striatum , 1993, Brain Research.

[87]  E. Bird,et al.  Organization of dopamine D1 and D2 receptors in human striatum: Receptor autoradiographic studies in Huntington's disease and schizophrenia , 1988, Synapse.

[88]  D. Lewis,et al.  Antibodies directed against tyrosine hydroxylase differentially recognize noradrenergic axons in monkey neocortex , 1989, Brain Research.

[89]  K. O’Malley,et al.  Organization and evolution of the rat tyrosine hydroxylase gene. , 1987, Biochemistry.

[90]  G. Pearlson,et al.  Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. , 1986, Science.

[91]  R. Ferrante,et al.  Tyrosine hydroxylase-like immunoreactivity is distributed in the matrix compartment of normal human and Huntington's disease striatum , 1987, Brain Research.

[92]  Y. Smith,et al.  The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA‐Containing input from the globus pallidus in the rat , 1990, The Journal of comparative neurology.

[93]  R S Frackowiak,et al.  Asymmetrical pre-synaptic and post-synpatic changes in the striatal dopamine projection in dopa naïve parkinsonism. Diagnostic implications of the D2 receptor status. , 1993, Brain : a journal of neurology.

[94]  A. Graybiel,et al.  Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease , 1988, Nature.

[95]  C. Marsden,et al.  Lack of change in striatal DARPP-32 levels following nigrostriatal dopaminergic lesions in animals and in parkinsonian syndromes in man , 1990, Brain Research.

[96]  S. Kish,et al.  Aging Produces a Specific Pattern of Striatal Dopamine Loss: Implications for the Etiology of Idiopathic Parkinson's Disease , 1992, Journal of neurochemistry.

[97]  S. Sesack,et al.  Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA‐immunoreactive dendrites in rat and monkey cortex , 1995, The Journal of comparative neurology.

[98]  I. Törk,et al.  Morphology of tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex , 2004, Experimental Brain Research.

[99]  Y. Hurd,et al.  The dopamine transporter and dopamine D2 receptor messenger RNAs are differentially expressed in limbic- and motor-related subpopulations of human mesencephalic neurons , 1994, Neuroscience.

[100]  A. Graybiel,et al.  [3H]SCH 23390 binding to D1 dopamine receptors in the basal ganglia of the cat and primate: Delineation of striosomal compartments and pallidal and nigral subdivisions , 1988, Neuroscience.

[101]  M. Bannon,et al.  Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[102]  J. Haycock,et al.  Four isoforms of tyrosine hydroxylase are expressed in human brain , 1993, Neuroscience.

[103]  Y. Agid,et al.  Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease , 1983, Brain Research.

[104]  D. Amaral,et al.  Some observations on hypothalamo-amygdaloid connections in the monkey , 1982, Brain Research.

[105]  P. Greengard,et al.  Immunocytochemical localization of DARPP‐32, a dopamine and cyclic‐ AMP‐regulated phosphoprotein, in the primate brain , 1992, The Journal of comparative neurology.

[106]  S. Udenfriend,et al.  TYROSINE HYDROXYLASE. THE INITIAL STEP IN NOREPINEPHRINE BIOSYNTHESIS. , 1964, The Journal of biological chemistry.

[107]  J. Bouyer,et al.  Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriatum , 1984, Brain Research.

[108]  B. Berger,et al.  Neurochemical development of the hippocampal region in the fetal rhesus monkey. II. Immunocytochemistry of peptides, calcium‐binding proteins, DARPP‐32, and monoamine innervation in the entorhinal cortex by the end of gestation , 1994, Hippocampus.

[109]  J. Hedreen,et al.  Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque , 1991, The Journal of comparative neurology.

[110]  H. Fibiger,et al.  Neurochemical heterogeneity of the primate nucleus accumbens , 2004, Experimental Brain Research.

[111]  P. Courtoy,et al.  Resolution and limitations of the immunoperoxidase procedure in the localization of extracellular matrix antigens. , 1983, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[112]  James N. Davis,et al.  Catecholaminergic innervation of the hippocampus in the cynomolgus monkey , 1990, The Journal of comparative neurology.

[113]  R. Bhatnagar,et al.  Assessment of the effects of neonatal subcutaneous 6-hydroxydopamine on noradrenergic and dopaminergic innervation of the cerebral cortex , 1979, Brain Research.

[114]  S. Vincent Distributions of tyrosine hydroxylase‐, dopamine‐β‐hydroxylase‐, and phenylethanolamine‐N‐methyltransferase‐immunoreactive neurons in the brain of the hamster (Mesocricetus auratus) , 1988, The Journal of comparative neurology.

[115]  A. Björklund,et al.  Topography of the monoamine neuron systems in the human brain as revealed in fetuses. , 1973, Acta physiologica Scandinavica. Supplementum.

[116]  I. Nagatsu,et al.  Do some tyrosine hydroxylase-immunoreactive neurons in the human ventrolateral arcuate nucleus and globus pallidus produce only l-DOPA? , 1991, Neuroscience Letters.

[117]  J. Glowinski,et al.  Extensive Co-localization of neurotensin with dopamine in rat meso-cortico-frontal dopaminergic neurons , 1988, Neuropeptides.

[118]  D. Mash,et al.  Visualizing Dopamine and Serotonin Transporters in the Human Brain with the Potent Cocaine Analogue [125I]RTI‐55: In Vitro Binding and Autoradiographic Characterization , 1994, Journal of neurochemistry.

[119]  L. Seiden,et al.  Effects of repeated injections of cocaine on catecholamine receptor binding sites, dopamine transporter binding sites and behavior in rhesus monkey , 1992, Brain Research.

[120]  B. Berger,et al.  Early evidence of catecholaminergic cell groups in 5- and 6-week-old human embryos using tyrosine hydroxylase and dopamine-β-hydroxylase immunocytochemistry , 1991, Neuroscience Letters.

[121]  Y. Kubota,et al.  Ultrastructural localization of enkephalin immunoreactivity in the substantia nigra of the monkey , 1986, Brain Research.

[122]  D. Felten,et al.  Monoamine distribution in primate brain V. Monoaminergic nuclei: Anatomy, pathways and local organization , 1983, Brain Research Bulletin.

[123]  D. Weinberger,et al.  The effect of apomorphine on regional cerebral blood flow in schizophrenia. , 1989, The Journal of neuropsychiatry and clinical neurosciences.

[124]  J. Haycock Multiple signaling pathways in bovine chromaffin cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40 , 2004, Neurochemical Research.

[125]  G. Halliday,et al.  Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human , 1986, The Journal of comparative neurology.

[126]  A. Parent,et al.  Pedunculopontine nucleus in the squirrel monkey: Cholinergic and glutamatergic projections to the substantia nigra , 1994, The Journal of comparative neurology.

[127]  J. Joyce Differential response of striatal dopamine and muscarinic cholinergic receptor subtypes to the loss of dopamine. III. Results in Parkinson's disease cases , 1993, Brain Research.

[128]  J. Palacios,et al.  Dopamine receptors in human brain: Autoradiographic distribution of D1 sites , 1989, Neuroscience.

[129]  J. Morrison,et al.  Noradrenergic innervation of monkey prefrontal cortex: A dopamine‐β‐hydroxylase immunohistochemical study , 1989, The Journal of comparative neurology.

[130]  E. V. Bockstaele,et al.  Synaptic structure and connectivity of serotonin terminals in the ventral tegmental area: potential sites for modulation of mesolimbic dopamine neurons , 1994, Brain Research.

[131]  J. Marshall,et al.  Striosomal organization of cholinergic and dopaminergic uptake sites and cholinergic M1 receptors in the adult human striatum: a quantitative receptor autoradiographic study , 1990, Brain Research.

[132]  P. Rakić,et al.  The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus monkey. , 1982, Brain research.

[133]  H J Gundersen,et al.  The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method. , 1991, Journal of neurology, neurosurgery, and psychiatry.

[134]  D. Grandy,et al.  Dopamine Receptor Gene Expression in the Human Medial Temporal Lobe , 1994, Neuropsychopharmacology.

[135]  R. Roth,et al.  Effects of D2 dopamine receptor antagonists on fos protein expression in the striatal complex and entorhinal cortex of the nonhuman primate , 1996, Synapse.

[136]  S. Sesack,et al.  Cellular substrates for interactions between dynorphin terminals and dopamine dendrites in rat ventral tegmental area and substantia nigra , 1993, Brain Research.

[137]  M. Geffard,et al.  Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level , 1987, Neuroscience.

[138]  P. Goldman-Rakic,et al.  The anatomy of dopamine in monkey and human prefrontal cortex. , 1992, Journal of neural transmission. Supplementum.

[139]  T. Sasaoka,et al.  Primary structure of mouse tyrosine hydroxylase deduced from its cDNA. , 1991, Biochemical and biophysical research communications.

[140]  R. Roth,et al.  Homovanillic acid concentrations in brain, CSF and plasma as indicators of central dopamine function in primates , 2005, Journal of Neural Transmission.

[141]  R. Roth,et al.  Biochemical analysis of caudate nucleus biopsy samples from parkinsonian patients , 1988, Annals of neurology.

[142]  J S Fowler,et al.  Decreased dopamine transporters with age in healthy human subjects , 1994, Annals of neurology.

[143]  J. Mallet,et al.  Multiple Human Tyrosine Hydroxylase Enzymes, Generated Through Alternative Splicing, Have Different Specific Activities in Xenopus Oocytes , 1988, Journal of neurochemistry.

[144]  H. Berendse,et al.  Heterogeneous distribution of dopamine D1 and D2 receptors in the human ventral striatum , 1993, Neuroscience Letters.

[145]  B. Everitt,et al.  Immunohistochemical evidence for a new group of catecholamine-containing neurons in the basal forebrain of the monkey , 1983, Neuroscience Letters.

[146]  R. Grossman,et al.  Tyrosine hydroxylase—immunoreactive neurons in the temporal lobe in complex partial seizures , 1990, Annals of neurology.

[147]  S. Sesack,et al.  Ultrastructural associations between dopamine terminals and local circuit neurons in the monkey prefrontal cortex: a study of calretinin-immunoreactive cells , 1995, Neuroscience Letters.

[148]  D. Price,et al.  Injury of nigral neurons exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A tyrosine hydroxylase immunocytochemical study in monkey , 1986, Neuroscience.

[149]  D. Melchitzky,et al.  Neuronal localization of tyrosine hydroxylase gene products in human neocortex , 1991, Molecular and Cellular Neuroscience.

[150]  G. Reynolds,et al.  Are Striatal Dopamine D4 Receptors Increased in Schizophrenia? , 1994, Journal of neurochemistry.

[151]  D. Amaral,et al.  The entorhinal cortex of the monkey: I. Cytoarchitectonic organization , 1987, The Journal of comparative neurology.

[152]  J. Palacios,et al.  High resolution separation methods for the determination of intact human erythropoiesis stimulating agents. A review. , 2012, Analytica chimica acta.

[153]  C. Aoki,et al.  Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding , 1990, Journal of Neuroscience Methods.

[154]  S. Boyce,et al.  Autoradiographic studies in animal models of hemi-parkinsonism reveal dopamine D2 but not D1 receptor supersensitivity. II. Unilateral intra-carotid infusion of MPTP in the monkey (Macaca fascicularis) , 1990, Brain Research.

[155]  S. D’Mello,et al.  Isolation and structural characterization of the bovine tyrosine hydroxylase gene , 1989, Journal of neuroscience research.

[156]  G. Gottleib,et al.  Damage to dopamine systems differs between parkinson's disease and alzheimer's disease with parkinsonism , 1995, Annals of neurology.

[157]  J. Joyce,et al.  Dopamine D2 receptor expression in hippocampus and parahippocampal cortex of rat, cat, and human in relation to tyrosine hydroxylase‐immunoreactive fibers , 1994, Hippocampus.

[158]  M. Zigmond,et al.  The effects of phosphorylating conditions on tyrosine hydroxylase activity are influenced by assay conditions and brain region. , 1981, Life sciences.

[159]  T. Plant Neuroendocrine basis of puberty in the rhesus monkey (Macaca mulatta) , 1988 .

[160]  A. Parent,et al.  The heterogeneity of the mesostriatal dopaminergic system as revealed in normal and parkinsonian monkeys. , 1993, Advances in neurology.

[161]  T J Sejnowski,et al.  When is an inhibitory synapse effective? , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[162]  J. Lund,et al.  Spine formation and maturation of type 1 synapses on spiny stellate neurons in primate visual cortex , 1983, The Journal of comparative neurology.

[163]  T. Kosaka,et al.  Tyrosine hydroxylase-immunoreactive intrinsic neurons in the rat cerebral cortex , 2004, Experimental Brain Research.

[164]  A. Parent,et al.  Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry , 1989, The Journal of comparative neurology.

[165]  B. Berger,et al.  Neurotensin innervation of the human cerebral cortex: lack of colocalization with catecholamines , 1990, Brain Research.

[166]  Kisou Kubota,et al.  Dopamine modulates neuronal activities related to motor performance in the monkey prefrontal cortex , 1986, Brain Research.

[167]  K. Fuxe,et al.  Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain , 1974 .

[168]  M. Carpenter,et al.  Subthalamic nucleus of the monkey: connections and immunocytochemical features of afferents. , 1990, Journal fur Hirnforschung.

[169]  B. Berger,et al.  Major dopamine innervation of the cortical motor areas in the Cynomolgus monkey. A radioautographic study with comparative assessment of serotonergic afferents , 1986, Neuroscience Letters.

[170]  P. Rakić,et al.  Scheduling of monoaminergic neurotransmitter receptor expression in the primate neocortex during postnatal development. , 1992, Cerebral cortex.

[171]  A. Graybiel,et al.  Dopamine uptake sites in the striatum are distributed differentially in striosome and matrix compartments. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[172]  S. Foote,et al.  Distribution of corticotropin‐releasing‐factor‐like immunoreactivity in brainstem of two monkey species (Saimiri sciureus and Macaca fascicularis): An immunohistochemical study , 1988, The Journal of comparative neurology.

[173]  P. Goldman-Rakic,et al.  Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390 , 1991, Neuroscience.

[174]  E. Richfield,et al.  Comparative distributions of dopamine D‐1 and D‐2 receptors in the cerebral cortex of rats, cats, and monkeys , 1989, The Journal of comparative neurology.

[175]  L. S. Bye,et al.  Characterization of the cloned human mu opioid receptor. , 1995, The Journal of pharmacology and experimental therapeutics.

[176]  G. Koob,et al.  The origin and distribution of dopamine-containing afferents to the rat frontal cortex , 1978, Brain Research.

[177]  J. Kleinman,et al.  Decreased density of human striatal dopamine uptake sites with age. , 1986, European Journal of Pharmacology.

[178]  W. Gibb,et al.  Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson's disease , 1992, Brain Research.

[179]  P. S. Goldman,et al.  Catecholamines in neocortex of rhesus monkeys: regional distribution and ontogenetic development , 1977, Brain Research.

[180]  A. Parent,et al.  Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus) , 1986, Neuroscience.

[181]  B. Berger,et al.  Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development. , 1985, Brain research.

[182]  A. Charara,et al.  Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris‐leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry , 1996, The Journal of comparative neurology.

[183]  James N. Davis,et al.  Frequency analysis of catecholamine axonal morphology in human brain I. Effects of postmortem delay interval , 1993, Journal of the Neurological Sciences.

[184]  S. P. Hunt,et al.  Immunocytochemical studies on the basal ganglia and substantia nigra in Parkinson's disease and Huntington's chorea , 1988, Neuroscience.

[185]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[186]  P. Goldman-Rakic,et al.  A common action of clozapine, haloperidol, and remoxipride on D1- and D2-dopaminergic receptors in the primate cerebral cortex. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[187]  S. Sesack,et al.  Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area , 1992, The Journal of comparative neurology.

[188]  T. Hyde,et al.  Distribution of putative D4 dopamine receptors in postmortem striatum from patients with schizophrenia , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[189]  J. Palacios,et al.  Expression of acetylcholinesterase messenger RNA in human brain: Anin situ hybridization study , 1993, Neuroscience.

[190]  Y. Agid,et al.  Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP? , 1993, Neuroscience.

[191]  P S Goldman-Rakic,et al.  Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[192]  P S Goldman-Rakic,et al.  Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[193]  J. Morrison,et al.  Brainstem dopaminergic neurons project to monkey parietal cortex , 1988, Neuroscience Letters.

[194]  W. Gibb,et al.  Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. , 1991, Journal of neurology, neurosurgery, and psychiatry.

[195]  A. Lamouroux,et al.  Cloning of Quail Tyrosine Hydroxylase: Amino Acid Homology with Other Hydroxylases Discloses Functional Domains , 1988, Journal of neurochemistry.

[196]  G. Reynolds Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia , 1983, Nature.

[197]  P. Mcgeer,et al.  Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K , 1990, Brain Research.

[198]  F E Bloom,et al.  Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. , 1978, Annual review of neuroscience.

[199]  Päivi Marjamäki,et al.  Age-dependent decline in human brain dopamine D1 and D2 receptors , 1990, Brain Research.

[200]  M. Akil,et al.  The dopaminergic innervation of monkey entorhinal cortex. , 1993, Cerebral cortex.

[201]  O. Hornykiewicz,et al.  The topographical distribution of the monoaminergic innervation in the basal ganglia of the human brain. , 1983, Progress in brain research.

[202]  B. Berger,et al.  Alterations of dopaminergic and noradrenergic innervations in motor cortex in parkinson's disease , 1991, Annals of neurology.

[203]  P. Goldman-Rakic,et al.  Silver-enhanced diaminobenzidine-sulfide (SEDS): a technique for high-resolution immunoelectron microscopy demonstrated with monoamine immunoreactivity in monkey cerebral cortex and caudate. , 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[204]  J. Morrison,et al.  Localization of multiple dopamine receptor subtype mRNAs in human and monkey motor cortex and striatum. , 1992, Brain research. Molecular brain research.

[205]  J. Mallet,et al.  Phosphorylation of human recombinant tyrosine hydroxylase isoforms 1 and 2: an additional phosphorylated residue in isoform 2, generated through alternative splicing. , 1991, The Journal of biological chemistry.

[206]  Y. Kurosawa,et al.  Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene. , 1987, Biochemical and biophysical research communications.

[207]  M. Kaufman,et al.  Autoradiographic localization of cocaine binding sites by [3H]CFT ([3H]WIN 35,428) in the monkey brain , 1990, Synapse.

[208]  M. Giguére,et al.  Comparative morphology of the substantia nigra and ventral tegmental area in the monkey, cat and rat , 1983, Brain Research Bulletin.

[209]  J. Pearson,et al.  Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase , 1983, Neuroscience.

[210]  E. Richfield,et al.  Heterogeneous dopamine receptor changes in early and late Huntington's disease , 1991, Neuroscience Letters.

[211]  S. Watson,et al.  Distribution of D2 dopamine receptor mRNA in the primate brain , 1991, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[212]  S. Trottier,et al.  Co-localization of tyrosine hydroxylase and GABA immunoreactivities in human cortical neurons , 1989, Neuroscience Letters.

[213]  E. Richfield,et al.  Comparative distribution of dopamine D‐1 and D‐2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys , 1987, The Journal of comparative neurology.

[214]  J. Palacios,et al.  Serotonin-1 receptor binding sites in the human basal ganglia are decreased in huntington's chorea but not in parkinson's disease: A quantitative in vitro autoradiography study , 1989, Neuroscience.

[215]  H. Okamura,et al.  Comparative distribution of three opioid systems in the lower brainstem of the monkey (Macaca fuscata) , 1989, The Journal of comparative neurology.

[216]  K. O’Malley,et al.  Analysis of tyrosine hydroxylase and insulin transcripts in human neuroendocrine tissues. , 1990, Brain research. Molecular brain research.

[217]  M. Geffard,et al.  Identification of L‐DOPA‐dopamine and L‐DOPA cell bodies in the rat mesencephalic dopaminergic cell systems , 1989, Synapse.

[218]  Y. Agid,et al.  Micro topography of Tyrosine Hydroxylase, Glutamic Acid Decarboxylase, and Choline Acetyltransferase in the Substantia Nigra and Ventral Tegmental Area of Control and Parkinsonian Brains , 1981, Journal of neurochemistry.

[219]  A. Parent,et al.  Multiple striatal representation in primate substantia nigra , 1994, The Journal of comparative neurology.

[220]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[221]  P S Goldman-Rakic,et al.  Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain , 1983, The Journal of comparative neurology.

[222]  W. Quinn,et al.  Isolation and characterization of the gene for drosophila tyrosine hydroxylase , 1989, Neuron.

[223]  D. Reis,et al.  Aromaticl-amino acid decar☐ylase in the rat brain: Immunocytochemical localization in neurons of the brain stem , 1984, Neuroscience.

[224]  J. Palacios,et al.  Dopamine receptors in human brain: autoradiographic distribution of D1 and D2 sites in Parkinson syndrome of different etiology , 1989, Brain Research.

[225]  Tomiki Sumiyoshi,et al.  Dopamine D4 receptors and effects of guanine nucleotides on [3H]raclopride binding in postmortem caudate nucleus of subjects with schizophrenia or major depression , 1995, Brain Research.

[226]  W. Young,et al.  Tyrosine-hydroxylase-containing neurons in the primate basal forebrain magnocellular complex , 1992, Brain Research.

[227]  B. Berger,et al.  Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates , 1991, Trends in Neurosciences.

[228]  M. Tohyama,et al.  Distribution of substance P-like immunoreactive structures in the brainstem of the adult human brain: an immunocytochemical study , 1987, Brain Research.

[229]  P. Cohen,et al.  Substrate specificity of a multifunctional calmodulin-dependent protein kinase. , 1985, The Journal of biological chemistry.

[230]  Paul G. Ince,et al.  The distribution of excitatory amino acid receptors in the normal human midbrain and basal ganglia with implications for Parkinson's disease: a quantitative autoradiographic study using [3H]MK-801, [3H]glycine, [3H]CNQX and [3H]kainate , 1994, Brain Research.

[231]  S. Stone-Elander,et al.  D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride. , 1990, Archives of general psychiatry.

[232]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[233]  Y. Kurosawa,et al.  Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types. , 1988, Journal of biochemistry.

[234]  P S Goldman-Rakic,et al.  Light and electron microscopic characterization of dopamine‐immunoreactive axons in human cerebral cortex , 1992, The Journal of comparative neurology.

[235]  A. Parent,et al.  Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. , 1991, NeuroReport.

[236]  O. Hornykiewicz,et al.  Distribution of high affinity sodium-independent [3H]gamma-aminobutyric acid ([3H]GABA) binding in the human brain: Alterations in Parkinson's disease , 1977, Brain Research.

[237]  D. Sibley,et al.  Molecular biology of dopamine receptors. , 1992, Trends in pharmacological sciences.

[238]  H. Nauta,et al.  Efferent projections of the subthalamic nucleus: An autoradiographic study in monkey and cat , 1978, The Journal of comparative neurology.

[239]  J. Haycock,et al.  Phosphorylation of tyrosine hydroxylase in situ at serine 8, 19, 31, and 40. , 1990, The Journal of biological chemistry.

[240]  C. Whitty,et al.  Neurokinin receptor gene expression in substantia nigra: localization, regulation, and potential physiological significance. , 1995, Canadian journal of physiology and pharmacology.

[241]  D. Mash,et al.  Dopamine transporter messenger RNA in Parkinson's disease and control substantia nigra neurons , 1994, Annals of neurology.

[242]  R. Riesenberg,et al.  Immunocytochemical demonstration of GABAergic synaptic connections in rat substantia nigra after different lesions of the striatonigral projection , 1988, Brain Research.

[243]  J. Zimmer,et al.  Short-term changes of parvalbumin and calbindin immunoreactivity in the rat hippocampus following cerebral ischemia , 1990, Neuroscience Letters.

[244]  M. Norita,et al.  Subcortical afferents to the monkey amygdala: an HRP study , 1980, Brain Research.

[245]  S. Haber,et al.  The organization of the descending ventral pallidal projections in the monkey , 1993, The Journal of comparative neurology.

[246]  G. Paxinos,et al.  Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H] mazindol autoradiography , 1991, The Journal of comparative neurology.

[247]  M. Zarbin,et al.  Distribution of opiate receptors in the monkey brain: An autoradiographic study , 1982, Neuroscience.

[248]  J. Pearson,et al.  Tyrosine hydroxylase immunohistochemistry in human brain , 1979, Brain Research.

[249]  G. Vauquelin,et al.  Autoradiographic distribution of D3-type dopamine receptors in human brain using [3H]7-hydroxy-N,N-di-n-propyl-2-aminotetralin , 1994, Brain Research.

[250]  C. Tamminga,et al.  D2-Family receptor distribution in human postmortem tissue: an autoradiographic study , 1995, Neuroreport.

[251]  J. Marshall,et al.  Human striatal dopamine receptors are organized in compartments. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[252]  T. F. Freund,et al.  Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines , 1984, Neuroscience.

[253]  V. Pickel,et al.  Dual ultrastructural localization of enkephalin and tyrosine hydroxylase immunoreactivity in the rat ventral tegmental area: multiple substrates for opiate-dopamine interactions , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[254]  J. Bolam,et al.  Cholinergic input to dopaminergic neurons in the substantia nigra: A double immunocytochemical study , 1991, Neuroscience.

[255]  H. Braak,et al.  The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases , 1992, Neuroscience Research.

[256]  A. Charara,et al.  Synaptic innervation of midbrain dopaminergic neurons by glutamate‐enriched terminals in the squirrel monkey , 1996, The Journal of comparative neurology.

[257]  R B Innis,et al.  Postmortem Stability of Monoamines, Their Metabolites, and Receptor Binding in Rat Brain Regibns , 1994, Journal of neurochemistry.

[258]  P. Gaspar,et al.  Regional Distribution of Neurotransmitter Synthesizing Enzymes in the Basal Ganglia of Human Brain , 1980, Journal of neurochemistry.

[259]  D. Reis,et al.  Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum , 1981, Brain Research.

[260]  P. Goldman-Rakic,et al.  Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[261]  L. Forno,et al.  Immunocytochemical Studies of Substance P and Met‐Enkephalin in the Basal Ganglia and Substantia Nigra in Huntington's, Parkinson's and Alzheimer's Diseases , 1985, Journal of neuropathology and experimental neurology.

[262]  S. Haber,et al.  Topographic organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study , 1990, The Journal of comparative neurology.

[263]  Richard F. Martin,et al.  Primate neostriatal neurons containing tyrosine hydroxylase: Immunohistochemical evidence , 1987, Neuroscience Letters.

[264]  M. Weller,et al.  Expression of human tyrosine hydroxylase cDNA in invertebrate cells using a baculovirus vector. , 1988, The Journal of biological chemistry.

[265]  S. Watson,et al.  Effects of cocaine on D3 and D4 receptor expression in the human striatum , 1994, Biological Psychiatry.

[266]  L. Descarries,et al.  Distribution of GABA‐immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus) , 1987, The Journal of comparative neurology.

[267]  R. Strecker,et al.  Development of dopaminergic neurons in the human substantia nigra , 1991, Experimental Neurology.

[268]  S. Haber,et al.  Interrelationship of the distribution of neuropeptides and tyrosine hydroxylase immunoreactivity in the human substantia nigra , 1989, The Journal of comparative neurology.

[269]  Microtopography of d1 dopaminergic binding sites in the human substantia nigra: An autoradiographic study , 1990, Neuroscience.

[270]  B. A. Brooks,et al.  Midbrain Dopaminergic Cell Loss in Parkinson's Disease and MPTP‐Induced Parkinsonism: Sparing of Calbindin‐D25k—Containing Cells a , 1992, Annals of the New York Academy of Sciences.

[271]  R. Pearson,et al.  The Human Nervous System. Basic Elements of Structure and Function , 1967, The Yale Journal of Biology and Medicine.

[272]  S. Watson,et al.  Differential expression of autoreceptors in the ascending dopamine systems of the human brain. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[273]  J. Lindenmayer New pharmacotherapeutic modalities for negative symptoms in psychosis , 1995, Acta psychiatrica Scandinavica. Supplementum.

[274]  J. Kleinman,et al.  [3H]GBR‐12935 Binding to the Dopamine Transporter Is Decreased in the Caudate Nucleus in Parkinson's Disease , 1987, Journal of neurochemistry.

[275]  K. Neve,et al.  Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain. , 1991, The Journal of pharmacology and experimental therapeutics.

[276]  M. Schumacher,et al.  Regulation by dopaminergic neurotransmission of dopamine D2 mRNA and receptor levels in the striatum and nucleus accumbens of the rat. , 1991, Brain research. Molecular brain research.

[277]  S. D’Mello,et al.  Isolation and nucleotide sequence of a cDNA clone encoding bovine adrenal tyrosine hydroxylase: Comparative analysis of tyrosine hydroxylase gene products , 1988, Journal of neuroscience research.

[278]  B. Pakkenberg,et al.  A stereological study of substantia nigra in young and old rhesus monkeys , 1995, Brain Research.

[279]  S. Boularand,et al.  Analysis of the 5’Region of the Human Tyrosine Hydroxylase Gene: Combinatorial Patterns of Exon Splicing Generate Multiple Regulated Tyrosine Hydroxylase Isoforms , 1988, Journal of neurochemistry.

[280]  J. Kleinman,et al.  Quantitative autoradiography of dopamine-D1 receptors, D2 receptors, and dopamine uptake sites in postmortem striatal specimens from schizophrenic patients , 1994, Biological Psychiatry.

[281]  B. Berger,et al.  Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine‐beta‐hydroxylase , 1989, The Journal of comparative neurology.

[282]  O. Hornykiewicz,et al.  Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey , 1991, Neuroscience.

[283]  E. Bird,et al.  Dopamine and homovanillic acid concentrations in striatal and limbic regions of human brain , 1982, Annals of neurology.

[284]  P. Rakić,et al.  Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain , 1990, The Journal of comparative neurology.

[285]  P. Mcgeer,et al.  Aging and extrapyramidal function. , 1977, Archives of neurology.

[286]  Hirokazu Sato Prefrontal Lobe‐Substantia Nigra Projection in Human Cerebrum , 1986, The Japanese journal of psychiatry and neurology.

[287]  W Rall,et al.  Computational study of an excitable dendritic spine. , 1988, Journal of neurophysiology.

[288]  A. Graybiel,et al.  Subdivisions of the primate substantia nigra pars compacta detected by acetylcholinesterase histochemistry , 1987, Brain Research.

[289]  D. Lewis,et al.  Heterogeneity of layer II neurons in human entorhinal cortex , 1992, The Journal of comparative neurology.

[290]  B. Berger,et al.  Chemoanatomic compartments in the human bed nucleus of the stria terminalis , 1989, Neuroscience.

[291]  G. Halliday,et al.  Quantitative analysis of the variability of substantia nigra pigmented cell clusters in the human , 1995, Neuroscience.

[292]  A. Parent,et al.  The dopaminergic nigropallidal projection in primates: distinct cellular origin and relative sparing in MPTP-treated monkeys. , 1990, Advances in neurology.

[293]  S. Leeman,et al.  Immunoreactive substance P in the substantia nigra of the monkey: light and electron microscopic localization , 1982, Brain Research.

[294]  Menek Goldstein,et al.  The dopaminergic innervation of monkey prefrontal cortex: a tyrosine hydroxylase immunohistochemical study , 1988, Brain Research.

[295]  R. Moore Catecholamine innervation of the basal forebrain. I. The septal area , 1978 .

[296]  S. T. Kitai,et al.  Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta , 1995, Neuroscience Research.

[297]  Lewy bodies in tyrosine hydroxylase-synthesizing neurons of the human cerebral cortex , 1989, Neuroscience Letters.

[298]  C J CLEMEDSON,et al.  DYNAMIC RESPONSE OF CHEST WALL AND LUNG INJURIES IN RABBITS EXPOSED TO AIR SHOCK WAVES OF SHORT DURATION. , 1964, Acta physiologica Scandinavica. Supplementum.

[299]  M B Carpenter,et al.  Nigrostriatal and nigrothalamic fibers in the rhesus monkey , 1972, The Journal of comparative neurology.

[300]  O. Lindvall,et al.  The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. , 1974, Acta physiologica Scandinavica. Supplementum.

[301]  Karl J. Friston,et al.  Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia , 1995, Nature.

[302]  K. Satoh,et al.  Distribution of neurotensin‐containing fibers in the frontal cortex of the macaque monkey , 1990, The Journal of comparative neurology.

[303]  P. Goldman-Rakic,et al.  Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP , 1982, The Journal of comparative neurology.

[304]  P. Goldman-Rakic,et al.  Prenatal Monoaminergic Innervation of the Cerebral Cortex: Differences between Rodents and Primates , 1992 .

[305]  J. Pearson,et al.  Appearance of tyrosine hydroxylase immunoreactivity in the human embryo. , 1980, Developmental neuroscience.

[306]  V. Pickel,et al.  Spiny neurons lacking choline acetyltransferase immunoreactivity are major targets of cholinergic and catecholaminergic terminals in rat striatum , 1990, Journal of neuroscience research.

[307]  H. E. Rosvold,et al.  Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. , 1979, Science.

[308]  M. Kaufman,et al.  Distribution of cocaine recognition sites in monkey brain: I. In vitro autoradiography with [3H]CFT , 1991, Synapse.

[309]  J. Palacios,et al.  Mesostriatal and mesolimbic dopamine uptake binding sites are reduced in Parkinson's disease and progressive supranuclear palsy: A quantitative autoradiographic study using [3H]mazindol , 1992, Neuroscience.

[310]  D. Weinberger,et al.  Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism. , 1988, Archives of general psychiatry.

[311]  J. Palacios,et al.  Visualization of a dopamine D1 receptor mRNA in human and rat brain. , 1991, Brain research. Molecular brain research.

[312]  H. Ichinose,et al.  Multiple mRNAs of monkey tyrosine hydroxylase. , 1990, Biochemical and biophysical research communications.

[313]  D. Lewis The organization of chemically-identified neural systems in monkey prefrontal cortex: Afferent systems , 1990, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[314]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[315]  J. S. Lund,et al.  Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex , 1995, Neuroscience.

[316]  S. Augood,et al.  Dopamine transporter (Dat) and synaptic vesicle amine transporter (VMAT2) gene expression in the substantia nigra of control and Parkinson's disease. , 1996, Brain research. Molecular brain research.

[317]  J. Langston,et al.  Aging and the nigrostriatal dopamine system: a non-human primate study. , 1994, Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration.

[318]  N. Aronin,et al.  Light and electron microscopic localization of immunoreactive Leu- enkephalin in the monkey basal ganglia , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[319]  P. Seeman,et al.  The Dopamine Transporter Is Absent in Parkinsonian Putamen and Reduced in the Caudate Nucleus , 1991, Journal of neurochemistry.

[320]  B. Bogerts A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker , 1981, The Journal of comparative neurology.

[321]  J. Morris,et al.  Tyrosine hydroxylase-like (TH) immunoreactivity in human mesolimbic system , 1990, Neuroscience Letters.

[322]  A. Graybiel Correspondence between the Dopamine islands and striosomes of the mammalian striatum , 1984, Neuroscience.

[323]  G. Duncan,et al.  Cocaine use increases [3HWIN 35428 binding sites in human striatum , 1993, Brain Research.

[324]  A. Björklund,et al.  Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex , 1978, Neuroscience Letters.

[325]  A. Nordberg,et al.  Quantitative autoradiography of nicotinic receptors in large cryosections of human brain hemispheres , 1989, Neuroscience Letters.

[326]  Y. Smith,et al.  The GABA and substance P input to dopaminergic neurones in the substantia nigra of the rat , 1990, Brain Research.

[327]  V. Lehtinen,et al.  Striatal D2 dopamine receptor characteristics in neuroleptic-naive schizophrenic patients studied with positron emission tomography. , 1994, Archives of general psychiatry.

[328]  J. Palacios,et al.  Mapping dopamine receptors in the human brain. , 1988, Journal of neural transmission. Supplementum.

[329]  J. Palacios,et al.  Dopamine receptors in human brain: Autoradiographic distribution of D2 sites , 1989, Neuroscience.

[330]  M. Kaufman,et al.  Severe depletion of cocaine recognition sites associated with the dopamine transporter in Parkinson's‐diseased striatum , 1991, Synapse.

[331]  S. N. Haber,et al.  The organization of midbrain projections to the ventral striatum in the primate , 1994, Neuroscience.

[332]  J. Palacios,et al.  Decreased densities of dopamine D1 receptors in the putamen and hippocampus in senile dementia of the Alzheimer type , 1988, Brain Research.

[333]  K. Kitahama,et al.  l-DOPA-immunoreactive neurons in the rat hypothalamic tuberal region , 1988, Neuroscience Letters.

[334]  J. Lund,et al.  Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin‐releasing factor‐and parvalbumin‐immunoreactive populations , 1990, The Journal of comparative neurology.

[335]  A. Deutch,et al.  Dopaminergic mechanisms in the pathogenesis of schizophrenia 1 , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[336]  D. Geschwind,et al.  Distribution of major neurotransmitter receptors in the motor and somatosensory cortex of the rhesus monkey , 1989, Neuroscience.

[337]  S. Haber,et al.  The organization of midbrain projections to the striatum in the primate: Sensorimotor-related striatum versus ventral striatum , 1994, Neuroscience.

[338]  D. Wong,et al.  In vivo imaging of baboon and human dopamine transporters by positron emission tomography using [11C]WIN 35,428 , 1993, Synapse.

[339]  I. Kostović,et al.  Neurodevelopment, Aging and Cognition , 1992 .

[340]  Y. Agid,et al.  Dopamine deficiency in the cerebral cortex in Parkinson disease , 1982, Neurology.

[341]  M. Lidow,et al.  D1- and D2 dopaminergic receptors in the developing cerebral cortex of macaque monkey: A film autoradiographic study , 1995, Neuroscience.

[342]  T. M. Marin-Padilla,et al.  Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex , 1982, Anatomy and Embryology.

[343]  P. Greengard,et al.  Comparison of the immunocytochemical localization of DARPP‐32 and I‐1 in the amygdala and hippocampus of the rhesus monkey , 1993, The Journal of comparative neurology.

[344]  Jeffrey T. Keller,et al.  Connections of the subthalamic nucleus in the monkey , 1981, Brain Research.

[345]  B. Berger,et al.  Immunocytochemical evidence of well‐developed dopaminergic and noradrenergic innervations in the frontal cerebral cortex of human fetuses at midgestation , 1993, The Journal of comparative neurology.

[346]  A. Lees,et al.  Ageing and Parkinson's disease: substantia nigra regional selectivity. , 1991, Brain : a journal of neurology.

[347]  A. Heritch,et al.  Evidence for reduced and dysregulated turnover of dopamine in schizophrenia. , 1990, Schizophrenia bulletin.

[348]  M. Aldrich,et al.  Autoradiographic studies of post-mortem human narcoleptic brain , 1993, Neurophysiologie Clinique/Clinical Neurophysiology.

[349]  Current Concepts in Parkinson's Disease Research , 1993 .

[350]  G. Vauquelin,et al.  Evidence for a widespread dopaminergic innervation of the human cerebral neocortex , 1989, Neuroscience Letters.

[351]  J. Mallet,et al.  A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics , 1987, Nature.

[352]  A. Charara,et al.  Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey , 1994, Brain Research.

[353]  H. Berendse,et al.  Evidence For Two Neurochemical Divisions in the Human Nucleus Accumbens , 1994, The European journal of neuroscience.

[354]  P S Goldman-Rakic,et al.  DARPP‐32, a phosphoprotein enriched in dopaminoceptive neurons bearing dopamine D1 receptors: DIstribution in the cerebral cortex of the newborn and adult rhesus monkey , 1990, The Journal of comparative neurology.

[355]  S. Kito,et al.  Quantitative autoradiographic localization of the M1 and M2 subtypes of muscarinic acetylcholine receptors in the monkey brain. , 1989, Japanese journal of pharmacology.

[356]  A. Graybiel,et al.  Subdivisions of the dopamine-containing A8-A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix , 1987, Neuroscience.

[357]  Y. Agid,et al.  Is the Vulnerability of Neurons in the Substantia Nigra of Patients with Parkinson's Disease Related to Their Neuromelanin Content? , 1992, Journal of neurochemistry.

[358]  T. Maeda,et al.  Dopaminergic Innervation of Primate Cerebral Cortex , 1995 .

[359]  S. Folstein,et al.  Nigral dopamine type-1 receptors are reduced in Huntington's disease: A postmortem autoradiographic study using [3H]SCH 23390 and correlation with [3H]forskolin binding , 1990, Experimental Neurology.

[360]  S. Foote,et al.  Distribution of choline acetyltransferase‐, serotonin‐, dopamine‐β‐hydroxylase‐, tyrosine hydroxylase‐immunoreactive fibers in monkey primary auditory cortex , 1987, The Journal of comparative neurology.

[361]  A. Parent,et al.  Differential dopaminergic innervation of the two pallidal segments in the squirrel monkey (Saimiri sciureus) , 1987, Brain Research.

[362]  J. Joyce,et al.  Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson's disease, Alzheimer's disease, and mixed Parkinson's disease/Alzheimer's disease patients: an autoradiographic study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[363]  P. Goldman-Rakic,et al.  Region‐specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis , 1984, The Journal of comparative neurology.

[364]  E. Tolosa,et al.  Identification and characterization of serotonin 5-HT4 receptor binding sites in human brain: comparison with other mammalian species. , 1994, Brain research. Molecular brain research.

[365]  A. Parent,et al.  Anatomical aspects of information processing in primate basal ganglia , 1993, Trends in Neurosciences.

[366]  T. Hökfelt,et al.  Occurrence of neurotensinlike immunoreactivity in subpopulations of hypothalamic, mesencephalic, and medullary catecholamine neurons , 1984, The Journal of comparative neurology.

[367]  Y Tateno,et al.  Dopamine D1 receptors in Parkinson's disease and striatonigral degeneration: a positron emission tomography study. , 1993, Journal of neurology, neurosurgery, and psychiatry.

[368]  David M. A. Mann,et al.  Possible role of neuromelanin in the pathogenesis of Parkinson's disease , 1983, Mechanisms of Ageing and Development.

[369]  O. Rønnekleiv,et al.  Distribution of dopamine D1, D2, and D5 receptor mRNAs in the monkey brain: ribonuclease protection assay analysis. , 1995, Brain research. Molecular brain research.

[370]  A. Parent,et al.  The striatopallidal and striatonigral projections: two distinct fiber systems in primate , 1984, Brain Research.

[371]  A. Graybiel,et al.  Distinct nigrostriatal projection systems innervate striosomes and matrix in the primate striatum , 1989, Brain Research.

[372]  P. Seeman,et al.  Dopamine receptors and transporters in Parkinson's disease and schizophrenia , 1990, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[373]  Y. Agid,et al.  Regional distribution of μ, δ and κ opioid receptors in human brains from controls and parkinsonian subjects , 1987, Brain Research.

[374]  P. Seeman,et al.  Dopamine D4 receptors elevated in schizophrenia , 1993, Nature.

[375]  K. Davis,et al.  Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[376]  D. Charney,et al.  Age-Related Decline in Striatal Dopamine Transporter Binding with Iodine-123-β-CITSPECT , 1995 .

[377]  J. Haycock,et al.  Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain , 1994, Brain Research.

[378]  Y. Kurosawa,et al.  Expression of four types of human tyrosine hydroxylase in COS cells , 1988, FEBS letters.

[379]  S. Foote,et al.  The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[380]  J. Kaas,et al.  Calbindin D-28K in the dopaminergic mesocortical projection of a monkey (Aotus trivirgatus) , 1993, Brain Research.

[381]  C. Verney,et al.  Development of the catecholamine neurons in human embryos and fetuses, with special emphasis on the innervaton of the cerebral cortex , 1995, The Journal of comparative neurology.

[382]  P. Goldman-Rakic Development of cortical circuitry and cognitive function. , 1987, Child Development.

[383]  A C Roberts,et al.  6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[384]  D. Lewis Distribution of choline acetyltransferase-immunoreactive axons in monkey frontal cortex , 1991, Neuroscience.

[385]  P S Goldman-Rakic,et al.  Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. , 1982, Brain research.

[386]  J. Szabo Organization of the ascending striatal afferents in monkeys , 1980, The Journal of comparative neurology.

[387]  G. Vauquelin,et al.  D2 dopamine receptors in the human brain: heterogeneity based on differences in guanine nucleotide effect on agonist binding, and their presence on corticostriatal nerve terminals , 1989, Brain Research.

[388]  P. Greengard,et al.  Expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human brain tissue , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[389]  Douglas W. Jones,et al.  The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[390]  F. V. van Leeuwen,et al.  Vasopressin and oxytocin systems in the brain and upper spinal cord of Macaca fascicularis , 1989, The Journal of comparative neurology.

[391]  A. Parent,et al.  Pedunculopontine nucleus in the squirrel monkey: Projections to the basal ganglia as revealed by anterograde tract‐tracing methods , 1994, The Journal of comparative neurology.

[392]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[393]  Nancy Y. Ip,et al.  ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF , 1991, Cell.

[394]  P. Goldman-Rakic,et al.  Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[395]  D. Reis,et al.  Immunocytochemical localization of tyrosine hydroxylase in the human fetal nervous system , 1980, The Journal of comparative neurology.

[396]  J. Kaas,et al.  Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys , 1992, The Journal of comparative neurology.

[397]  M Laruelle,et al.  Single photon emission computed tomographic imaging demonstrates loss of striatal dopamine transporters in Parkinson disease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[398]  J. Meador-Woodruff,et al.  Expression of the dopamine D2 receptor gene in brain , 1991, Biological Psychiatry.

[399]  Laurent Descarries,et al.  Ultrastructural features of dopamine axon terminals in the anteromedial and the suprarhinal cortex of adult rat , 1988, Brain Research.

[400]  D. Amaral,et al.  Transmitter systems in the primate dentate gyrus. , 1986, Human neurobiology.

[401]  E G Jones,et al.  Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[402]  A. Crane,et al.  Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates , 1979, Brain Research.

[403]  W M Cowan,et al.  Subcortical afferents to the hippocampal formation in the monkey , 1980, The Journal of comparative neurology.

[404]  Robert M. Kessler,et al.  Identification of extrastriatal dopamine D2 receptors in post mortem human brain with [125I]epidepride , 1993, Brain Research.

[405]  André Parent,et al.  The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method , 1983, Brain Research.

[406]  G. Leichnetz,et al.  The efferent projections of the medial prefrontal cortex in the squirrel monkey (Saimiri sciureus) , 1976, Brain Research.

[407]  P S Goldman-Rakic,et al.  D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[408]  T. Beach,et al.  The distribution of substance P in the primate basal ganglia: An immunohistochemical study of baboon and human brain , 1984, Neuroscience.

[409]  K. Fuxe,et al.  Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rats. , 1972, Brain research.

[410]  Christer Halldin,et al.  Distribution of D1- and D2-Dopamine Receptors, and Dopamine and Its Metabolites in the Human Brain , 1994, Neuropsychopharmacology.

[411]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE-CONTAINING NEURONS IN THE CENTRAL NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE CELL BODIES OF BRAIN STEM NEURONS. , 1964, Acta physiologica Scandinavica. Supplementum.

[412]  A. Parent,et al.  Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A PHA‐L study of subcortical projections , 1992, The Journal of comparative neurology.

[413]  J. Joyce,et al.  Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[414]  P. Goldman-Rakic,et al.  Characterization of subtype-specific antibodies to the human D5 dopamine receptor: studies in primate brain and transfected mammalian cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[415]  B. Berger,et al.  Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon Immunocytochemical localization and relationships , 1983, Journal of the Neurological Sciences.

[416]  G. Halliday,et al.  Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans , 1996, The Journal of comparative neurology.

[417]  S H Snyder,et al.  Positron emission tomographic imaging of the dopamine transporter with 11C‐WIN 35,428 reveals marked declines in mild Parkinson's disease , 1993, Annals of neurology.

[418]  S S Stensaas,et al.  Autoradiographic Evidence of [3H]SCH 23390 Binding Site; in Human Prefrontal Cortex (Brodmann's Area 9) , 1987, Journal of neurochemistry.

[419]  J. Penney,et al.  Glutamate receptors in the substantia nigra of Parkinson's disease brains , 1992, Neurology.

[420]  B. Bloch,et al.  D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum , 1990, Neuroscience Letters.

[421]  S. Haber,et al.  Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study , 1990, Brain Research.

[422]  D. Surmeier,et al.  Are neostriatal dopamine receptors co-localized? , 1993, Trends in Neurosciences.

[423]  M. Caron,et al.  Molecular cloning and expression of the gene for a human D1 dopamine receptor , 1990, Nature.

[424]  S. Snyder,et al.  Evidence for neuromelanin involvement in MPTP-induced neurotoxicity , 1987, Nature.

[425]  G L Brownell,et al.  Dopamine fiber detection by [11C]-CFT and PET in a primate model of parkinsonism , 1992, Neuroreport.

[426]  M. Akil,et al.  The distribution of tyrosine hydroxylase-immunoreactive fibers in the human entorhinal cortex , 1994, Neuroscience.

[427]  A. Siegel,et al.  Origin of brain stem and temporal cortical afferent fibers to the septal region in the squirrel monkey , 1981, Experimental Neurology.

[428]  B. Bunney,et al.  Acute Effects of Typical and Atypical Antipsychotic Drugs on the Release of Dopamine from Prefrontal Cortex, Nucleus Accumbens, and Striatum of the Rat: An In Vivo Microdialysis Study , 1990, Journal of neurochemistry.

[429]  D. Rosenberg,et al.  Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: A tyrosine hydroxylase immunohistochemical analysis , 1995, The Journal of comparative neurology.

[430]  A. Parent,et al.  Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods , 1987, Brain Research.

[431]  P. Seeman,et al.  Low density of dopamine D4 receptors in Parkinson's, schizophrenia, and control brain striata , 1993, Synapse.

[432]  D. Price,et al.  The striatal mosaic in primates: Patterns of neuropeptide immunoreactivity differentiate the ventral striatum from the dorsal striatum , 1991, Neuroscience.

[433]  B. Berger,et al.  Tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex: a novel catecholaminergic group? , 1987, Neuroscience Letters.

[434]  J. Marcusson,et al.  [3H]GBR-12935 binding to dopamine uptake sites in the human brain , 1988, Brain Research.

[435]  J. Hámori,et al.  Synapses between GABA-immunoreactive axonal and dendritic elements in monkey substantia nigra , 1986, Neuroscience Letters.

[436]  A. Parent,et al.  The output organization of the substantia nigra in primate as revealed by a retrograde double labeling method , 1983, Brain Research Bulletin.

[437]  J. Kelsoe,et al.  Isolation and characterization of the human tyrosine hydroxylase gene: identification of 5' alternative splice sites responsible for multiple mRNAs. , 1987, Biochemistry.