A systemic risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling

We model the downside and upside spillover effects, systemic and tail dependence risks of the DJ World Islamic (DJWI) and DJ World Islamic Financial (DJWIF) indices, and of Islamic equity indices from Japan, USA and the UK. We draw our empirical results and conclusions by implementing a robust modeling framework consisting of Value-at-Risk (VaR), conditional VaR (CoVaR), Delta conditional VaR (ΔCoVaR), canonical vine conditional VaR (c-vine CoVaR), and time-varying and static bivariate and vine copula models. Full sample estimations indicate larger downside spillover effects and systemic risk for the DJ Islamic Financials World and USA Islamic indices, while Islamic indices from Japan and the DJ World financials have greater exposure to upside spillover risk effects. During the financial crisis the USA and UK Islamic indices display higher downside systemic risk; and the strongest negative tail asymmetric dependence occurs between the DJ Islamic Financials World, and the Islamic indices from Japan and the DJ World financials. Implications of the results are discussed.

[1]  Mazin A. M. Al Janabi,et al.  Multivariate dependence and portfolio optimization algorithms under illiquid market scenarios , 2017, Eur. J. Oper. Res..

[2]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[3]  Markus K. Brunnermeier,et al.  Federal Reserve Bank of New York , 2009 .

[4]  Qianqiu Liu,et al.  On Portfolio Optimization: How and When Do We Benefit from High-Frequency Data? , 2009 .

[5]  Mohd. Azmi Omar,et al.  The Impact of Crisis and Macroeconomic Variables Towards Islamic Banking Deposits , 2011 .

[6]  Claudia Czado,et al.  Pair-Copula Constructions of Multivariate Copulas , 2010 .

[7]  P. Phillips Testing for a Unit Root in Time Series Regression , 1988 .

[8]  E. Luciano,et al.  Copula methods in finance , 2004 .

[9]  Andrea Ugolini,et al.  Downside and upside risk spillovers between exchange rates and stock prices , 2016 .

[10]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[11]  W. Fuller,et al.  Distribution of the Estimators for Autoregressive Time Series with a Unit Root , 1979 .

[12]  Markus K. Brunnermeier,et al.  Federal Reserve Bank of New York Staff Reports , 2013 .

[13]  Craig Hiemstra,et al.  Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation , 1994 .

[14]  Stelios D. Bekiros,et al.  Multivariate Dependence Risk and Portfolio Optimization: An Application to Mining Stock Portfolios , 2015 .

[15]  J. R. M. Hosking,et al.  The Multivariate Portmanteau Statistic , 1980 .

[16]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[17]  Georgios Chortareas,et al.  Forecasting exchange rate volatility using high-frequency data: Is the euro different? , 2011 .

[18]  Aristidis K. Nikoloulopoulos,et al.  Vine copulas with asymmetric tail dependence and applications to financial return data , 2012, Comput. Stat. Data Anal..

[19]  Nader Naifar Do global risk factors and macroeconomic conditions affect global Islamic index dynamics? A quantile regression approach , 2016 .

[20]  Duc Khuong Nguyen,et al.  Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach , 2017 .

[21]  R. Nelsen An Introduction to Copulas , 1998 .

[22]  Jose Arreola Hernandez,et al.  Are oil and gas stocks from the Australian market riskier than coal and uranium stocks? Dependence risk analysis and portfolio optimization , 2014 .

[23]  Claudia Czado,et al.  Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50 , 2013 .

[24]  Yan-Leung Cheung,et al.  The international transmission of stock market fluctuation between the developed markets and the Asian—Pacific markets , 1992 .

[25]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[26]  Alberto Abadie Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models , 2002 .

[27]  J. Reboredo,et al.  Systemic risk of Spanish listed banks: a vine copula CoVaR approach , 2016 .

[28]  Andy Naranjo,et al.  The Integration of Commercial Real Estate Markets and Stock Markets , 1999 .

[29]  Mazin A. M. Al Janabi,et al.  Time lag dependence, cross-correlation and risk analysis of US energy and non-energy stock portfolios , 2015 .

[30]  Giulio Girardi,et al.  Systemic Risk Measurement: Multivariate GARCH Estimation of CoVaR , 2012 .

[31]  A. I. McLeod,et al.  DIAGNOSTIC CHECKING ARMA TIME SERIES MODELS USING SQUARED‐RESIDUAL AUTOCORRELATIONS , 1983 .

[32]  Rosylin Mohd. Yusof,et al.  Islamic banking and economic growth in GCC & East Asia countries , 2013 .

[33]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[34]  Robert A. Korajczyk,et al.  The Arbitrage Pricing Theory and Multifactor Models of Asset Returns , 1993, Finance.

[35]  H. Joe Multivariate Models and Multivariate Dependence Concepts , 1997 .

[36]  J. Reboredo,et al.  Systemic risk in European sovereign debt markets: A CoVaR-copula approach , 2015 .

[37]  Jaeho Yun,et al.  Measuring Systemic Risk in the Korean Banking Sector via Dynamic Conditional Correlation Models , 2013 .