Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable

The quasiperiodic solution of the 2+1 dimensional Burgers equation with a discrete variable is obtained through three steps: (a) decomposition into a symplectic map plus two finite-dimensional Hamiltonian systems; (b) straightening out of both the discrete and the continuous flows in the Jacobian variety; (c) inversion into the original variables. Inner relation with the modified Kadomtsev–Petviashvili equation is presented. The explicit theta function solutions for these two 2+1 integrable models are given.

[1]  D. Mumford Tata Lectures on Theta I , 1982 .

[2]  Shunichi Tanaka,et al.  Analogue of Inverse Scattering Theory for the Discrete Hill's Equation and Exact Solutions for the Periodic Toda Lattice , 1976 .

[3]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[4]  B. Simon,et al.  On the Toda and Kac-van Moerbeke Systems , 2022 .

[5]  O. Ragnisco,et al.  On the relation of the stationary Toda equation and the symplectic maps , 1995 .

[6]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[7]  X. Geng,et al.  From the special 2 + 1 Toda lattice to the Kadomtsev-Petviashvili equation , 1999 .

[8]  O I Bogoyavlenskii,et al.  Algebraic constructions of integrable dynamical systems-extensions of the Volterra system , 1991 .

[9]  Yi Cheng,et al.  Constraints of the 2+1 dimensional integrable soliton systems , 1992 .

[10]  Xianguo Geng,et al.  Relation between the Kadometsev–Petviashvili equation and the confocal involutive system , 1999 .

[11]  Mark Kac,et al.  On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .

[12]  V. Arnold,et al.  Dynamical Systems IV , 1987 .

[13]  Yi Cheng,et al.  The constraint of the Kadomtsev-Petviashvili equation and its special solutions , 1991 .

[14]  J. Moser,et al.  Three integrable Hamiltonian systems connected with isospectral deformations , 1975 .

[15]  S. Rauch-Wojciechowski,et al.  How to construct finite-dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials , 1992 .

[16]  Ruguang Zhou,et al.  The finite-band solution of the Jaulent–Miodek equation , 1997 .

[17]  M. Wadati,et al.  Transformation Theories for Nonlinear Discrete Systems , 1976 .

[18]  G. Teschl,et al.  Algebro-Geometric Quasi-Periodic Finite-Gap Solutions of the Toda and Kac-van Moerbeke Hierarchies , 1995 .

[19]  Shunichi Tanaka,et al.  Periodic Multi-Soliton Solutions of Korteweg-de Vries Equation and Toda Lattice , 1976 .

[20]  P. Damianou The Voltera model and its relation to the Toda lattice , 1991 .

[21]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[22]  E. Belokolos,et al.  Algebro-geometric approach to nonlinear integrable equations , 1994 .

[23]  T. Mitsui,et al.  Finite-band solutions of the Dirac soliton equation through a reduction technique , 1996 .

[24]  B. Konopelchenko,et al.  (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems , 1991 .

[25]  H. McKean Integrable systems and algebraic curves , 1979 .

[26]  K. Case,et al.  The discrete version of the Marchenko equations in the inverse scattering problem , 1973 .

[27]  M. Kac,et al.  A complete solution of the periodic Toda problem. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[28]  P. Moerbeke,et al.  The spectrum of Jacobi matrices , 1976 .

[29]  A. P. Shostak E-compact extensions of topological spaces , 1974 .

[30]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[31]  Geng Xian-Guo,et al.  C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy , 1990 .