Two notions of differential equivalence on Sboxes

In this work, we discuss two notions of differential equivalence on Sboxes. First, we introduce the notion of DDT-equivalence which applies to vectorial Boolean functions that share the same difference distribution table (DDT). Next, we compare this notion to what we call the $$\gamma $$γ-equivalence, applying to vectorial Boolean functions whose DDTs have the same support. We discuss the relation between these two equivalence notions, demonstrate that the number of DDT- or $$\gamma $$γ-equivalent functions is invariant under EA- and CCZ-equivalence and provide an algorithm for computing the DDT-equivalence and the $$\gamma $$γ-equivalence classes of a given function. We study the sizes of these classes for some families of Sboxes. Finally, we prove a result that shows that the rows of the DDT of an APN permutation are pairwise distinct.

[1]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[2]  Kaisa Nyberg,et al.  Differentially Uniform Mappings for Cryptography , 1994, EUROCRYPT.

[3]  Claude Carlet Partially-bent functions , 1993, Des. Codes Cryptogr..

[4]  Lars R. Knudsen,et al.  Truncated and Higher Order Differentials , 1994, FSE.

[5]  Serge Vaudenay,et al.  Links Between Differential and Linear Cryptanalysis , 1994, EUROCRYPT.

[6]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[7]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case , 1999, IEEE Trans. Inf. Theory.

[8]  Sangjin Lee,et al.  Improving the Upper Bound on the Maximum Differential and the Maximum Linear Hull Probability for SPN Structures and AES , 2003, FSE.

[9]  Eli Biham,et al.  Differential cryptanalysis of DES-like cryptosystems , 1990, Journal of Cryptology.

[10]  Alexander Pott,et al.  A new APN function which is not equivalent to a power mapping , 2005, IEEE Transactions on Information Theory.

[11]  Gregor Leander,et al.  On the Classification of 4 Bit S-Boxes , 2007, WAIFI.

[12]  Gregor Leander,et al.  On the classification of APN functions up to dimension five , 2008, Des. Codes Cryptogr..

[13]  Alexander Pott,et al.  A new almost perfect nonlinear function which is not quadratic , 2008, Adv. Math. Commun..

[14]  Gary McGuire,et al.  Proof of a Conjecture on the Sequence of Exceptional Numbers, Classifying Cyclic Codes and APN Functions , 2009, ArXiv.

[15]  Matthew J. B. Robshaw,et al.  PRINTcipher: A Block Cipher for IC-Printing , 2010, CHES.

[16]  Anne Canteaut,et al.  Differential properties of power functions , 2010, 2010 IEEE International Symposium on Information Theory.

[17]  Céline Blondeau,et al.  Multiple Differential Cryptanalysis: Theory and Practice , 2011, FSE.

[18]  Claude Carlet Open Questions on Nonlinearity and on APN Functions , 2014, WAIFI.

[19]  Yongqiang Li,et al.  A matrix approach for constructing quadratic APN functions , 2014, Des. Codes Cryptogr..

[20]  Valentin Suder Antiderivative Functions over F 2 n , 2015 .

[21]  Anne Canteaut,et al.  On the Behaviors of Affine Equivalent Sboxes Regarding Differential and Linear Attacks , 2015, EUROCRYPT.

[22]  Kaisa Nyberg,et al.  New Links Between Differential and Linear Cryptanalysis , 2015, IACR Cryptol. ePrint Arch..

[23]  Anastasiya Gorodilova On a remarkable property of APN Gold functions , 2016, IACR Cryptol. ePrint Arch..

[24]  Valentin Suder Antiderivative functions over $$\mathbb {F}_{2^n}$$F2n , 2017, Des. Codes Cryptogr..