A well‐balanced scheme to capture non‐explicit steady states in the Euler equations with gravity

Summary This paper describes a numerical discretization of the compressible Euler equations with a gravitational potential. A pertinent feature of the solutions to these inhomogeneous equations is the special case of stationary solutions with zero velocity, described by a nonlinear partial differential equation, whose solutions are called hydrostatic equilibria. We present a well-balanced method, meaning that besides discretizing the complete equations, the method is also able to maintain all hydrostatic equilibria. The method is a finite volume method, whose Riemann solver is approximated by a so-called relaxation Riemann solution that takes all hydrostatic equilibria into account. Relaxation ensures robustness, accuracy, and stability of our method, because it satisfies discrete entropy inequalities. We will present numerical examples, illustrating that our method works as promised. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  VIVIEN DESVEAUX,et al.  Well-balanced schemes to capture non-explicit steady states: Ripa model , 2016, Math. Comput..

[2]  Roland Masson,et al.  A relaxation method for two-phase flow models with hydrodynamic closure law , 2005, Numerische Mathematik.

[3]  Mária Lukácová-Medvid'ová,et al.  Well-balanced schemes for the shallow water equations with Coriolis forces , 2018, Numerische Mathematik.

[4]  Carlos Parés,et al.  On the hyperbolicity of two- and three-layer shallow water equations , 2010 .

[5]  Yulong Xing,et al.  High-order well-balanced finite volume WENO schemes for shallow water equation with moving water , 2007, J. Comput. Phys..

[6]  Christophe Berthon,et al.  Hydrostatic Upwind Schemes for Shallow–Water Equations , 2011 .

[7]  P. Floch Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Form , 1989 .

[8]  Jun Luo,et al.  A Well-Balanced Symplecticity-Preserving Gas-Kinetic Scheme for Hydrodynamic Equations under Gravitational Field , 2011, SIAM J. Sci. Comput..

[9]  Christophe Berthon,et al.  Efficient well-balanced hydrostatic upwind schemes for shallow-water equations , 2012, J. Comput. Phys..

[10]  Randall J. LeVeque,et al.  Wave Propagation Methods for Conservation Laws with Source Terms , 1999 .

[11]  Afeintou Sangam,et al.  A Local Entropy Minimum Principle for Deriving Entropy Preserving Schemes , 2012, SIAM J. Numer. Anal..

[12]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[13]  S. Mishra,et al.  Well-balanced schemes for the Euler equations with gravitation , 2014, J. Comput. Phys..

[14]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[15]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[16]  Randall J. LeVeque,et al.  A class of approximate Riemann solvers and their relation to relaxation schemes , 2001 .

[17]  Christophe Berthon,et al.  Numerical approximations of the 10-moment Gaussian closure , 2006, Math. Comput..

[18]  Tomás Morales de Luna,et al.  A Subsonic-Well-Balanced Reconstruction Scheme for Shallow Water Flows , 2010, SIAM J. Numer. Anal..

[19]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[20]  Kun Xu,et al.  A Well-Balanced Gas-Kinetic Scheme for the Shallow-Water Equations with Source Terms , 2002 .

[21]  Claude Marmignon,et al.  Well-Balanced Time Implicit Formulation of Relaxation Schemes for the Euler Equations , 2007, SIAM J. Sci. Comput..

[22]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[23]  P. Raviart,et al.  GODUNOV-TYPE SCHEMES FOR HYPERBOLIC SYSTEMS WITH PARAMETER-DEPENDENT SOURCE: THE CASE OF EULER SYSTEM WITH FRICTION , 2010 .

[24]  B. Perthame,et al.  Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .

[25]  C. M. Dafermos,et al.  Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .

[26]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[27]  Michael Breuß,et al.  A relaxation scheme for the approximation of the pressureless Euler equations , 2006 .

[28]  Christian Klingenberg,et al.  A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework , 2007, Numerische Mathematik.

[29]  Raphaèle Herbin,et al.  Finite Volumes for Complex Applications VI Problems & Perspectives , 2011 .

[30]  Leon Bieber,et al.  Numerical Schemes For Conservation Laws , 2016 .

[31]  P. Cargo,et al.  Un schéma équilibre adapté au modèle d'atmosphère avec termes de gravité , 1994 .

[32]  Christian Klingenberg,et al.  A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves , 2010, Numerische Mathematik.

[33]  Jean-Marc Hérard,et al.  A Robust Entropy-Satisfying Finite Volume Scheme for the Isentropic Baer-Nunziato Model , 2014 .

[34]  Q. Liang,et al.  Numerical resolution of well-balanced shallow water equations with complex source terms , 2009 .

[35]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[36]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[37]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[38]  P. LeFloch Hyperbolic Systems of Conservation Laws , 2002 .

[39]  C. Chalons,et al.  Relaxation and numerical approximation of a two-fluid two-pressure diphasic model , 2009 .

[40]  Ami Harten,et al.  Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .

[41]  Yu Liu,et al.  Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients , 2014, Numerische Mathematik.

[42]  Roberto Natalini,et al.  A well-balanced numerical scheme for a one dimensional quasilinear hyperbolic model of chemotaxis , 2012, 1211.4010.

[43]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[44]  Kun Xu,et al.  A Well-Balanced Kinetic Scheme for Gas Dynamic Equations under Gravitational Field , 2010 .