A well‐balanced scheme to capture non‐explicit steady states in the Euler equations with gravity
暂无分享,去创建一个
Christian Klingenberg | Christophe Berthon | Markus Zenk | Vivien Desveaux | C. Klingenberg | C. Berthon | Markus Zenk | Vivien Desveaux
[1] VIVIEN DESVEAUX,et al. Well-balanced schemes to capture non-explicit steady states: Ripa model , 2016, Math. Comput..
[2] Roland Masson,et al. A relaxation method for two-phase flow models with hydrodynamic closure law , 2005, Numerische Mathematik.
[3] Mária Lukácová-Medvid'ová,et al. Well-balanced schemes for the shallow water equations with Coriolis forces , 2018, Numerische Mathematik.
[4] Carlos Parés,et al. On the hyperbolicity of two- and three-layer shallow water equations , 2010 .
[5] Yulong Xing,et al. High-order well-balanced finite volume WENO schemes for shallow water equation with moving water , 2007, J. Comput. Phys..
[6] Christophe Berthon,et al. Hydrostatic Upwind Schemes for Shallow–Water Equations , 2011 .
[7] P. Floch. Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Form , 1989 .
[8] Jun Luo,et al. A Well-Balanced Symplecticity-Preserving Gas-Kinetic Scheme for Hydrodynamic Equations under Gravitational Field , 2011, SIAM J. Sci. Comput..
[9] Christophe Berthon,et al. Efficient well-balanced hydrostatic upwind schemes for shallow-water equations , 2012, J. Comput. Phys..
[10] Randall J. LeVeque,et al. Wave Propagation Methods for Conservation Laws with Source Terms , 1999 .
[11] Afeintou Sangam,et al. A Local Entropy Minimum Principle for Deriving Entropy Preserving Schemes , 2012, SIAM J. Numer. Anal..
[12] Z. Xin,et al. The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .
[13] S. Mishra,et al. Well-balanced schemes for the Euler equations with gravitation , 2014, J. Comput. Phys..
[14] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[15] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[16] Randall J. LeVeque,et al. A class of approximate Riemann solvers and their relation to relaxation schemes , 2001 .
[17] Christophe Berthon,et al. Numerical approximations of the 10-moment Gaussian closure , 2006, Math. Comput..
[18] Tomás Morales de Luna,et al. A Subsonic-Well-Balanced Reconstruction Scheme for Shallow Water Flows , 2010, SIAM J. Numer. Anal..
[19] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[20] Kun Xu,et al. A Well-Balanced Gas-Kinetic Scheme for the Shallow-Water Equations with Source Terms , 2002 .
[21] Claude Marmignon,et al. Well-Balanced Time Implicit Formulation of Relaxation Schemes for the Euler Equations , 2007, SIAM J. Sci. Comput..
[22] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[23] P. Raviart,et al. GODUNOV-TYPE SCHEMES FOR HYPERBOLIC SYSTEMS WITH PARAMETER-DEPENDENT SOURCE: THE CASE OF EULER SYSTEM WITH FRICTION , 2010 .
[24] B. Perthame,et al. Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics , 1998 .
[25] C. M. Dafermos,et al. Hyberbolic [i.e. Hyperbolic] conservation laws in continuum physics , 2005 .
[26] P. LeFloch,et al. Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .
[27] Michael Breuß,et al. A relaxation scheme for the approximation of the pressureless Euler equations , 2006 .
[28] Christian Klingenberg,et al. A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework , 2007, Numerische Mathematik.
[29] Raphaèle Herbin,et al. Finite Volumes for Complex Applications VI Problems & Perspectives , 2011 .
[30] Leon Bieber,et al. Numerical Schemes For Conservation Laws , 2016 .
[31] P. Cargo,et al. Un schéma équilibre adapté au modèle d'atmosphère avec termes de gravité , 1994 .
[32] Christian Klingenberg,et al. A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves , 2010, Numerische Mathematik.
[33] Jean-Marc Hérard,et al. A Robust Entropy-Satisfying Finite Volume Scheme for the Isentropic Baer-Nunziato Model , 2014 .
[34] Q. Liang,et al. Numerical resolution of well-balanced shallow water equations with complex source terms , 2009 .
[35] F. Bouchut. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .
[36] Alfredo Bermúdez,et al. Upwind methods for hyperbolic conservation laws with source terms , 1994 .
[37] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[38] P. LeFloch. Hyperbolic Systems of Conservation Laws , 2002 .
[39] C. Chalons,et al. Relaxation and numerical approximation of a two-fluid two-pressure diphasic model , 2009 .
[40] Ami Harten,et al. Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .
[41] Yu Liu,et al. Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients , 2014, Numerische Mathematik.
[42] Roberto Natalini,et al. A well-balanced numerical scheme for a one dimensional quasilinear hyperbolic model of chemotaxis , 2012, 1211.4010.
[43] J. Greenberg,et al. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .
[44] Kun Xu,et al. A Well-Balanced Kinetic Scheme for Gas Dynamic Equations under Gravitational Field , 2010 .