Optical Studies of Molecular-Beam Epitaxy-Grown Hg1−xCdxTe with x = 0.7–0.8

[1]  P. Dłużewski,et al.  Interface Studies in HgTe/HgCdTe Quantum Wells , 2020, physica status solidi (b).

[2]  V. G. Remesnik,et al.  Strong Disorder in HgCdTe Studied with Optical Methods and X-Ray Diffraction , 2019, Journal of Physics: Conference Series.

[3]  R. K. Bhan,et al.  Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization , 2019, Opto-Electronics Review.

[4]  S. Kocaman,et al.  Barrier engineering for HgCdTe unipolar detectors on alternative substrates , 2019, Infrared Physics & Technology.

[5]  J. Chu,et al.  Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications , 2019, Chinese Physics B.

[6]  K. Mynbaev,et al.  Photoluminescence of Molecular Beam Epitaxy-Grown Mercury Cadmium Telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si Technologies , 2018, Journal of Electronic Materials.

[7]  Shane Jacobson,et al.  Photon-counting Properties of SAPHIRA APD Arrays , 2018 .

[8]  Claire Cénac,et al.  Evaluation of a HgCdTe e-APD based detector for 2  μm CO2 DIAL application. , 2017, Applied optics.

[9]  Peter Capper,et al.  MCT: A UK Retrospective—Reminiscences of a Crystal Grower , 2017, Journal of Electronic Materials.

[10]  S. Winnerl,et al.  HgCdTe-based heterostructures for terahertz photonics , 2017 .

[11]  N. Akhavan,et al.  Hole Transport in Arsenic-Doped Hg1−xCdxTe with x ≥ 0.5 , 2016, Journal of Electronic Materials.

[12]  P. Jouneau,et al.  MBE growth and interfaces characterizations of strained HgTe/CdTe topological insulators , 2015 .

[13]  I. Izhnin,et al.  Photoluminescence of HgCdTe nanostructures grown by molecular beam epitaxy on GaAs , 2013 .

[14]  V. G. Remesnik,et al.  Photoluminescence of Hg1 − xCdxTe based heterostructures grown by molecular-beam epitaxy , 2011 .

[15]  M. Carmody,et al.  The Distribution Tail of LWIR HgCdTe-on-Si FPAs: a Hypothetical Physical Mechanism , 2011 .

[16]  A. Zunger,et al.  Design principles and coupling mechanisms in the 2D quantum well topological insulator HgTe/CdTe. , 2010, Physical review letters.

[17]  Yu. G. Sidorov,et al.  Growth of HgTe Quantum Wells for IR to THz Detectors , 2010 .

[18]  M. Carmody,et al.  Optical-absorption model for molecular-beam epitaxy HgCdTe and application to infrared detector photoresponse , 2004 .

[19]  G. Landwehr,et al.  Band structure and its temperature dependence for type-III HgTe'Hg 1¿x Cd x Te superlattices and their semimetal constituent , 2000 .

[20]  Alain Lusson,et al.  Systematic photoluminescence study of CdxHg1-xTe alloys in a wide composition range , 1990 .

[21]  J. Tomm,et al.  Middle infrared photoluminescence (PL) in the Hg1-xCdxTe (0.22≤ x ≤ 0.75) system , 1990 .

[22]  R. Triboulet,et al.  Photoluminescence of Cd-rich Hg1−xCdxTe alloys (0.7 , 1985 .

[23]  J. Bajaj,et al.  Photoluminescence in Liquid Phase Epitaxially grown Hg0.3Cd0.7Te and its CdTe Substrate at 4.2 and 77K , 1984, International Conference on Luminescence - 1984.

[24]  Y. Wu,et al.  Infrared photoluminescence on molecular beam epitaxially grown Hg1-xCdxTe layers , 1993 .