An Operational Radiometric Landsat Preprocessing Framework for Large-Area Time Series Applications

We developed a large-area preprocessing framework for multisensor Landsat data, capable of processing large data volumes. Cloud and cloud shadow detection is performed by a modified Fmask code. Surface reflectance is inferred from Tanré's formulation of the radiative transfer, including adjacency effect correction. A precompiled MODIS water vapor database provides daily or climatological fallback estimates. Aerosol optical depth (AOD) is estimated over dark objects (DOs) that are identified in a combined database and image-based approach, where information on their temporal persistency is utilized. AOD is inferred with consideration of the actual target reflectance and background contamination effect. In case of absent DOs in bright scenes, a fallback approach with a modeled AOD climatology is used instead. Topographic normalization is performed by a modified C-correction. The data are projected into a single coordinate system and are organized in a gridded data structure for simplified pixel-based access. We based the assessment of the produced data set on an exhaustive analysis of overlapping pixels: 98.8% of the redundant overlaps are in the range of the expected ±2.5% overall radiometric algorithm accuracy. AOD is in very good agreement with Aerosol Robotic Network sunphotometer data (R2: 0.72 to 0.79, low intercepts, and slopes near unity). The uncertainty in using the water vapor fallback climatology is approximately ±2.8% for the TM SWIR1 band in the wet season. The topographic correction was considered successful by an investigation of the nonrelationship between the illumination angle and the corrected radiance.

[1]  Alexander Smirnov,et al.  Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign , 2001 .

[2]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[3]  J. Hill,et al.  On the derivation of a spatially distributed aerosol climatology for its incorporation in a radiometric Landsat pre-processing framework , 2015 .

[4]  G. Zibordi,et al.  Atmospheric correction of data measured by a flying platform over the sea: elements of a model and its experimental validation. , 1987, Applied optics.

[5]  Alain Royer,et al.  Interannual landsat-MSS reflectance variation in an urbanized temperate zone , 1988 .

[6]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[7]  Michael Schmidt,et al.  Enhancing the Detectability of Clouds and Their Shadows in Multitemporal Dryland Landsat Imagery: Extending Fmask , 2015, IEEE Geoscience and Remote Sensing Letters.

[8]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[9]  M. Chase,et al.  Functional Habitat Heterogeneity and Large Herbivore Seasonal Habitat Selection in Northern Botswana , 2014 .

[10]  Yi Luo,et al.  Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America , 2008 .

[11]  Howard R. Gordon,et al.  A preliminary assessment of the Nimbus-7 CZCS atmospheric correction algorithm in a horizontally inhomogeneous atmosphere. [Coastal Zone Color Scanner , 1981 .

[12]  Neil Flood,et al.  An Operational Scheme for Deriving Standardised Surface Reflectance from Landsat TM/ETM+ and SPOT HRG Imagery for Eastern Australia , 2013, Remote. Sens..

[13]  M. Schaepman,et al.  Retrieving sup-pixel land cover composition through an effective integration of the spatial, spectral, and temporal dimensions of MERIS imagery , 2005 .

[14]  Sharon E. Nicholson,et al.  Rainfall and Atmospheric Circulation during Drought Periods and Wetter Years in West Africa , 1981 .

[15]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[16]  Patrick Hostert,et al.  A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[17]  Ole Tange,et al.  GNU Parallel: The Command-Line Power Tool , 2011, login Usenix Mag..

[18]  Martha C. Anderson,et al.  Free Access to Landsat Imagery , 2008, Science.

[19]  Yoram J. Kaufman,et al.  Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels , 2003 .

[20]  Patrick Hostert,et al.  Differences in Landsat-based trend analyses in drylands due to the choice of vegetation estimate , 2011 .

[21]  D. Roy,et al.  Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data , 2008 .

[22]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[23]  Michael A. Wulder,et al.  Opening the archive: How free data has enabled the science and monitoring promise of Landsat , 2012 .

[24]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[25]  W. Cohen,et al.  North American forest disturbance mapped from a decadal Landsat record , 2008 .

[26]  W. Cohen,et al.  Landsat's Role in Ecological Applications of Remote Sensing , 2004 .

[27]  C. Woodcock,et al.  Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images , 2015 .

[28]  Shoko Kobayashi,et al.  The integrated radiometric correction of optical remote sensing imageries , 2008 .

[29]  John L. Dwyer,et al.  Landsat: building a strong future , 2012 .

[30]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[31]  J. W. Chamberlain,et al.  Light Scattering in Planetary Atmospheres , 1976 .

[32]  R. Bird,et al.  Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres , 1986 .

[33]  José A. Sobrino,et al.  Atmospheric water vapor content over land surfaces derived from the AVHRR data: application to the Iberian Peninsula , 1999, IEEE Trans. Geosci. Remote. Sens..

[34]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[35]  J. Townshend,et al.  Bidirectional effects in Landsat reflectance estimates: Is there a problem to solve? , 2015 .

[36]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[37]  Michael A. Wulder,et al.  Landsat continuity: Issues and opportunities for land cover monitoring , 2008 .

[38]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[39]  Samantha J. Lavender,et al.  Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: a Review of Methods for Visible and Near-Infrared Wavelengths , 2009, Remote. Sens..

[40]  J. Hill,et al.  Radiometric correction of multitemporal Thematic Mapper data for use in agricultural land-cover classification and vegetation monitoring , 1991 .

[41]  Achim Röder,et al.  Extension of retrospective datasets using multiple sensors. An approach to radiometric intercalibration of Landsat TM and MSS data , 2005 .

[42]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[43]  W. Irvine Multiple scattering in planetary atmospheres , 1975 .

[44]  Peter Gege,et al.  The water color simulator WASI: an integrating software tool for analysis and simulation of optical in situ spectra , 2004, Comput. Geosci..

[45]  S. Sandmeier,et al.  Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment , 1993 .

[46]  T. Lin,et al.  The Lambertian assumption and Landsat data. , 1980 .

[47]  N. Flood,et al.  On determining appropriate aerosol optical depth values for atmospheric correction of satellite imagery for biophysical parameter retrieval: requirements and limitations under Australian conditions , 2013 .

[48]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[49]  Ruth S. DeFries,et al.  Earth observations for estimating greenhouse gas emissions from deforestation in developing countries , 2007 .

[50]  P. Deschamps,et al.  Description of a computer code to simulate the satellite signal in the solar spectrum : the 5S code , 1990 .

[51]  P. Deschamps,et al.  Influence of the background contribution upon space measurements of ground reflectance. , 1981, Applied optics.

[52]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[53]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[54]  A. Ångström The parameters of atmospheric turbidity , 1964 .

[55]  G. Thuillier,et al.  The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions , 2003 .

[56]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[57]  Wim H. Hesselink,et al.  A General Algorithm for Computing Distance Transforms in Linear Time , 2000, ISMM.

[58]  Peter Scarth,et al.  Remote sensing of tree-grass systems: The Eastern Australian woodlands , 2010 .

[59]  Emilio Chuvieco,et al.  International Journal of Applied Earth Observation and Geoinformation , 2011 .

[60]  A. Bucholtz,et al.  Rayleigh-scattering calculations for the terrestrial atmosphere. , 1995, Applied optics.

[61]  N. Flood,et al.  Limitations of the dense dark vegetation method for aerosol retrieval under Australian conditions , 2012 .

[62]  Berthold K. P. Horn,et al.  Hill shading and the reflectance map , 1981, Proceedings of the IEEE.

[63]  Neil Flood,et al.  Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface Reflectance: A Study in the Australian Landscape , 2014, Remote. Sens..

[64]  S. Aranuvachapun Satellite remote sensing of atmospheric optical depth spectrum , 1986 .

[65]  Thomas R. Loveland,et al.  A review of large area monitoring of land cover change using Landsat data , 2012 .

[66]  Y. Kaufman,et al.  Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery , 1988 .