Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model

We obtain a closed-form solution for the double-Laplace transform of Asian options under the hyper-exponential jump diffusion model. Similar results were available previously only in the special case of the Black-Scholes model (BSM). Even in the case of the BSM, our approach is simpler as we essentially use only Ito's formula and do not need more advanced results such as those of Bessel processes and Lamperti's representation. As a by-product we also show that a well-known recursion relating to Asian options has a unique solution in a probabilistic sense. The double-Laplace transform can be inverted numerically via a two-sided Euler inversion algorithm. Numerical results indicate that our pricing method is fast, stable, and accurate; and it performs well even in the case of low volatilities.

[1]  J. Vecer A new PDE approach for pricing arithmetic average Asian options , 2001 .

[2]  Jin E. Zhang Pricing continuously sampled Asian options with perturbation method , 2003 .

[3]  William T. Shaw,et al.  Differential equations and asymptotic solutions for arithmetic Asian options: ‘Black–Scholes formulae’ for Asian rate calls , 2008, European Journal of Applied Mathematics.

[4]  Ward Whitt,et al.  The Fourier-series method for inverting transforms of probability distributions , 1992, Queueing Syst. Theory Appl..

[5]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[6]  Erhan Bayraktar,et al.  Pricing Asian Options for Jump Diffusions , 2007, ArXiv.

[7]  M. Yor,et al.  Sur les fonctionnelles exponentielles de certains processus de lévy , 1994 .

[8]  L. Rogers,et al.  The value of an Asian option , 1995, Journal of Applied Probability.

[9]  Jin E. Zhang A Semi-Analytical Method for Pricing and Hedging Continuously Sampled Arithmetic Average Rate Options , 2001 .

[10]  Gianluca Fusai Pricing Asian options via Fourier and Laplace transforms , 2004 .

[11]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[12]  Nengjiu Ju Pricing Asian and basket options via Taylor expansion , 2002 .

[13]  Hansjörg Albrecher,et al.  On Asian option pricing for NIG Lévy processes , 2004 .

[14]  J. Ingersoll Theory of Financial Decision Making , 1987 .

[15]  Marc Yor,et al.  Exponential functionals of Brownian motion, I: Probability laws at fixed time , 2005 .

[16]  Michael Curran Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price , 1994 .

[17]  S. Turnbull,et al.  A Quick Algorithm for Pricing European Average Options , 1991, Journal of Financial and Quantitative Analysis.

[18]  François Dubois,et al.  Efficient Pricing of Asian Options by the PDE Approach , 2004 .

[19]  C. J. Harwood Modelling Financial Derivatives with Mathematica , 2000 .

[20]  S. Kou,et al.  A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and its Applications in Financial Engineering , 2014, Advances in Applied Probability.

[21]  M. Yor Exponential Functionals of Brownian Motion and Related Processes , 2001 .

[22]  W. Whitt,et al.  Multidimensional Transform Inversion with Applications to the Transient M/G/1 Queue , 1994 .

[23]  D. Heath,et al.  Numerical Inversion of Laplace Transforms: A Survey of Techniques with Applications to Derivative Pricing , 1999 .

[24]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[25]  THE VALUATION OF ASIAN OPTIONS FOR MARKET MODELS OF EXPONENTIAL LÉVY TYPE , 2004 .

[26]  William Shaw,et al.  Bounds for in-progress floating-strike Asian options using symmetry , 2007, Ann. Oper. Res..

[27]  M. Oder Analytical ramifications of derivatives valuation: Asian options and special functions , 2002 .

[28]  M. Fu,et al.  Pricing Continuous Asian Options: A Comparison of Monte Carlo and Laplace Transform Inversion Methods , 1998 .

[29]  B Lapeyre,et al.  Competitive Monte Carlo methods for the pricing of Asian options , 1999 .

[30]  P. Carr,et al.  Bessel processes, the integral of geometric Brownian motion, and Asian options , 2003, math/0311280.

[31]  Joel L. Schiff,et al.  The Laplace Transform , 1999 .

[32]  Jan Vecer,et al.  Pricing Asian options in a semimartingale model , 2004 .

[33]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[34]  Erhan Bayraktar,et al.  PRICING ASIAN OPTIONS FOR JUMP DIFFUSION , 2010 .

[35]  Ning Cai,et al.  On first passage times of a hyper-exponential jump diffusion process , 2009, Oper. Res. Lett..

[36]  M. Schroder On the integral of geometric Brownian motion , 2002, math/0205063.

[37]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[38]  S. Levendorskii,et al.  PRICING OF THE AMERICAN PUT UNDER LÉVY PROCESSES , 2004 .

[39]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[40]  S. Posner,et al.  Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution , 1998 .

[41]  G. Petrella An extension of the Euler Laplace transform inversion algorithm with applications in option pricing , 2004, Oper. Res. Lett..

[42]  S. Shreve Stochastic calculus for finance , 2004 .

[43]  Vadim Linetsky,et al.  Spectral Expansions for Asian (Average Price) Options , 2004, Oper. Res..

[44]  Wim Schoutens,et al.  General Lower Bounds for Arithmetic Asian Option Prices , 2008 .

[45]  D. Dufresne Laguerre Series for Asian and Other Options , 2000 .

[46]  Mingxin Xu,et al.  Pricing Asian options in a semimartingale model , 2004 .

[47]  J. Schiff The Laplace Transform: Theory and Applications , 1999 .

[48]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[49]  G. Thompson Fast narrow bounds on the value of Asian options , 2002 .

[50]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.