Certain Problems in Constrained Cubic Quasicrystals: Half-Space Green's Functions

[1]  E. Pan,et al.  Certain Problems in Constrained Cubic Quasicrystals: General Solutions and Infinite-space Green’s Functions , 2022, International Journal of Solids and Structures.

[2]  D. Castelvecchi First nuclear detonation created ‘impossible’ quasicrystals , 2021, Nature.

[3]  L. Bindi,et al.  Can quasicrystals survive in planetary collisions? , 2021, Progress in Earth and Planetary Science.

[4]  G. Tupholme A non-uniformly loaded anti-plane crack embedded in a half-space of a one-dimensional piezoelectric quasicrystal , 2018 .

[5]  A. Milazzo,et al.  Fundamental solutions for general anisotropic multi-field materials based on spherical harmonics expansions , 2016 .

[6]  A. Ricoeur,et al.  Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect , 2016 .

[7]  R. Müller,et al.  Fundamental solutions in a half space of two-dimensional hexagonal quasicrystal and their applications , 2015 .

[8]  Xiang-Yu Li,et al.  Indentation on two-dimensional hexagonal quasicrystals , 2014 .

[9]  Sergei V. Kalinin,et al.  Indentation of a punch with chemical or heat distribution at its base into transversely isotropic half-space: Application to local thermal and electrochemical probes , 2013 .

[10]  A. Ricoeur,et al.  Three-dimensional Green's functions for two-dimensional quasi-crystal bimaterials , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Sergei V. Kalinin,et al.  Point force and generalized point source on the surface of semi-infinite transversely isotropic material , 2011 .

[12]  Wei Wang,et al.  Completeness of general solutions for three-dimensional transversely isotropic piezoelectricity , 2008 .

[13]  Bai-Xiang Xu,et al.  Recent General Solutions in Linear Elasticity and Their Applications , 2008 .

[14]  Ping Gong,et al.  Isotropic and anisotropic physical properties of quasicrystals , 2006 .

[15]  T. Fan,et al.  Governing equations and general solutions of plane elasticity of one-dimensional quasicrystals , 2004 .

[16]  P. Paufler,et al.  On the temperature dependence of the hardness of quasicrystals , 2001 .

[17]  P. Paufler,et al.  Mechanical properties of quasicrystals investigated by indentation and scanning probe microscopes , 1999 .

[18]  M. Shi,et al.  On the general solutions of transversely isotropic elasticity , 1998 .

[19]  Ding Haojiang,et al.  General solutions for coupled equations for piezoelectric media , 1996 .

[20]  Maynard,et al.  Elastic isotropy and anisotropy in quasicrystalline and cubic AlCuLi. , 1995, Physical review letters.

[21]  Min-zhong Wang,et al.  Completeness and nonuniqueness ofgeneral solutions of transversely isotropic elasticity , 1995 .

[22]  M. Boissieu,et al.  Evidences for elastic isotropy and ultrasonic-attenuation anisotropy in Al-Mn-Pd quasi-crystals , 1992 .

[23]  Reynolds,et al.  Isotropic elasticity of the Al-Cu-Li quasicrystal. , 1990, Physical review. B, Condensed matter.

[24]  J. Socolar,et al.  Phonons, phasons, and dislocations in quasicrystals. , 1986, Physical review. B, Condensed matter.

[25]  Ramaswamy,et al.  Hydrodynamics of icosahedral quasicrystals. , 1985, Physical review. B, Condensed matter.

[26]  Bak Symmetry, stability, and elastic properties of icosahedral incommensurate crystals. , 1985, Physical review. B, Condensed matter.

[27]  John W. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[28]  N. Phan-Thien On the image system for the Kelvin-state , 1983 .

[29]  R. D. Mindlin Force at a Point in the Interior of a Semi-Infinite Solid , 1936 .