Dynamical systems, SIMP, bone remodeling and time dependent loads

The dynamical systems approach to sizing and SIMP topology optimization, introduced in a previous paper, is extended to the case of time-varying loads. A general dynamical system, satisfying a Lyaponov-type descent condition, is derived and specialized to a goal function combining stiffness and mass. For a cyclic time-dependent load it is indicated how, in the limit of short cycles compared to the overall time scale, this can be handled by multiple load cases. Numerical examples, both for a convex and a non-convex case, illustrates the theory.

[1]  Anders Klarbring,et al.  Topology optimization of flow networks , 2003 .

[2]  Anders Klarbring Topology optimization, dynamical systems, thermodynamics and growth , 2009 .

[3]  Yi Min Xie,et al.  Evolutionary Structural Optimization , 1997 .

[4]  K. Svanberg,et al.  An alternative interpolation scheme for minimum compliance topology optimization , 2001 .

[5]  Niclas Strömberg,et al.  Topology optimization of structures with manufacturing and unilateral contact constraints by minimizing an adjustable compliance–volume product , 2010 .

[6]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[7]  Il Yong Kim,et al.  Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization. , 2009, Journal of biomechanical engineering.

[8]  N. Strömberg An augmented Lagrangian method for fretting problems , 1997 .

[9]  J. W. C. Dunlop,et al.  New Suggestions for the Mechanical Control of Bone Remodeling , 2009, Calcified Tissue International.

[10]  Anders Klarbring,et al.  Dynamical systems and topology optimization , 2010 .

[11]  M. Bendsøe,et al.  A mutual energy formulation for optimal structural design , 2001 .

[12]  O. Sigmund Morphology-based black and white filters for topology optimization , 2007 .

[13]  J J Hamilton,et al.  Bone remodeling and structural optimization. , 1994, Journal of biomechanics.

[14]  Timothy P. Harrigan,et al.  Optimality conditions for finite element simulation of adaptive bone remodeling , 1992 .

[15]  O. Querin,et al.  Extended optimality in topology design , 2002 .

[16]  Anders Klarbring,et al.  An Introduction to Structural Optimization , 2008 .

[17]  Timothy P. Harrigan,et al.  Necessary and sufficient conditions for global stability and uniqueness in finite element simulations of adaptive bone remodeling , 1994 .

[18]  M. Bendsøe,et al.  Bounds on the Effect of Progressive Structural Degradation , 1998 .

[19]  O. M. Querin,et al.  Erratum for the Brief Note “Extended optimality in topology design” by G.I.N. Rozvany, O.M. Querin, Z. Gaspar, V. Pomezanski, (SMO 24, 257–261, 2002) , 2005 .

[20]  Martin P. Bendsøe Topology Optimization , 2009, Encyclopedia of Optimization.