Epitaxial Core–Shell MnFe Prussian Blue Cathode for Highly Stable Aqueous Zinc Batteries

[1]  Gongzheng Yang,et al.  Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive , 2023, Nature communications.

[2]  S. Liang,et al.  Achieving Highly Proton‐Resistant Zn–Pb Anode through Low Hydrogen Affinity and Strong Bonding for Long‐Life Electrolytic Zn//MnO2 Battery , 2023, Advanced materials.

[3]  Jiang Zhou,et al.  Facing the capacity fading of vanadium-based zinc-ion batteries , 2023, Trends in Chemistry.

[4]  Qiong Zheng,et al.  Sodium storage and capacity retention behavior derived from high-spin/low-spin Fe redox reaction in monoclinic Prussian blue based on operando Mössbauer characterization , 2023, Nano Energy.

[5]  Zheng Chen,et al.  Surface Engineering Stabilizes Rhombohedral Sodium Manganese Hexacyanoferrates for High-Energy Na-Ion Batteries. , 2023, Angewandte Chemie.

[6]  Chenggang Zhou,et al.  Binary Solvents Assisting the Long-Term Stability of Aqueous K/Zn Hybrid Batteries , 2022, SSRN Electronic Journal.

[7]  X. Lou,et al.  Formation of CuMn Prussian Blue Analog Double-shelled Nanoboxes Toward Long-life Zn-ion Batteries. , 2022, Angewandte Chemie.

[8]  W. Mai,et al.  Self‐Healing of Prussian Blue Analogues with Electrochemically Driven Morphological Rejuvenation , 2022, Advanced materials.

[9]  Tongchao Liu,et al.  Understanding intercalation chemistry for sustainable aqueous zinc–manganese dioxide batteries , 2022, Nature Sustainability.

[10]  J. Choi,et al.  Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries , 2022, Nature Communications.

[11]  V. Mathew,et al.  An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries , 2022, Chem.

[12]  Jiang Zhou,et al.  Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries , 2021, Nature Sustainability.

[13]  Yunhui Huang,et al.  Post-Synthetic and In Situ Vacancy Repairing of Iron Hexacyanoferrate Toward Highly Stable Cathodes for Sodium-Ion Batteries , 2021, Nano-Micro Letters.

[14]  E. Reguera,et al.  Recent progress in transition metal hexacyanometallates: From structure to properties and functionality , 2021, Coordination Chemistry Reviews.

[15]  Chenze Qi,et al.  High-voltage K/Zn dual-ion battery with 100,000-cycles life using zero-strain ZnHCF cathode , 2021 .

[16]  R. Behm,et al.  Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Zn‐Metal Battery , 2021, Advanced Energy Materials.

[17]  X. Lou,et al.  Construction of Co–Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Zn‐ion Batteries , 2021, Angewandte Chemie.

[18]  Wenguang Zhao,et al.  Zn2+ Induced Phase Transformation of K2MnFe(CN)6 Boosts Highly Stable Zinc‐Ion Storage , 2021, Advanced Energy Materials.

[19]  S. Dou,et al.  Epitaxial Nickel Ferrocyanide Stabilizes Jahn-Teller Distortions of Manganese Ferrocyanide for Sodium-Ion Batteries. , 2021, Angewandte Chemie.

[20]  Jiangwei Wang,et al.  Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries , 2021, Nature Communications.

[21]  Gongzheng Yang,et al.  High-voltage non-aqueous Zn/K1.6Mn1.2Fe(CN)6 batteries with zero capacity loss in extremely long working duration , 2020 .

[22]  G. Cao,et al.  Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. , 2020, Chemical reviews.

[23]  Zhichuan J. Xu,et al.  Unconventional Mn Vacancies in Mn–Fe Prussian Blue Analogs: Suppressing Jahn-Teller Distortion for Ultrastable Sodium Storage , 2020 .

[24]  V. Mathew,et al.  Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments , 2020 .

[25]  Leigang Xue,et al.  Hexacyanoferrate‐Type Prussian Blue Analogs: Principles and Advances Toward High‐Performance Sodium and Potassium Ion Batteries , 2020, Advanced Energy Materials.

[26]  Mietek Jaroniec,et al.  Roadmap for advanced aqueous batteries: From design of materials to applications , 2020, Science Advances.

[27]  Dipan Kundu,et al.  Scientific Challenges for the Implementation of Zn-Ion Batteries , 2020 .

[28]  C. Zhi,et al.  Hydrogen‐Free and Dendrite‐Free All‐Solid‐State Zn‐Ion Batteries , 2020, Advanced materials.

[29]  Huakun Liu,et al.  Stress Distortion Restraint to Boost the Sodium Ion Storage Performance of a Novel Binary Hexacyanoferrate , 2019, Advanced Energy Materials.

[30]  Daliang Fang,et al.  Activating C‐Coordinated Iron of Iron Hexacyanoferrate for Zn Hybrid‐Ion Batteries with 10 000‐Cycle Lifespan and Superior Rate Capability , 2019, Advanced materials.

[31]  J. Glenneberg,et al.  Mixed copper-zinc hexacyanoferrates as cathode materials for aqueous zinc-ion batteries , 2019, Energy Storage Materials.

[32]  Yuyan Shao,et al.  Water‐Lubricated Intercalation in V2O5·nH2O for High‐Capacity and High‐Rate Aqueous Rechargeable Zinc Batteries , 2018, Advanced materials.

[33]  Jun Chen,et al.  Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities , 2017, Nature Communications.

[34]  Tao Gao,et al.  Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion. , 2017, Journal of the American Chemical Society.

[35]  Yongchang Liu,et al.  Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. , 2016, Journal of the American Chemical Society.

[36]  Linda F. Nazar,et al.  A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode , 2016, Nature Energy.

[37]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[38]  J. Gim,et al.  A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications , 2015 .

[39]  Joseph Paul Baboo,et al.  Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System , 2015 .

[40]  F. La Mantia,et al.  An aqueous zinc-ion battery based on copper hexacyanoferrate. , 2015, ChemSusChem.

[41]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[42]  F. Scholz,et al.  The Formal Potentials of Solid Metal Hexacyanometalates , 1996 .

[43]  A. Pugžlys,et al.  The Influence of Defects on the Electron-Transfer and Magnetic Properties of , 2018 .

[44]  Xufeng Zhou,et al.  Towards High‐Voltage Aqueous Metal‐Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System , 2015 .