Hamilton cycles in dense vertex-transitive graphs
暂无分享,去创建一个
Jan Hladký | Demetres Christofides | András Máthé | Demetres Christofides | J. Hladký | András Máthé
[1] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[2] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[3] W. T. Gowers,et al. Quasirandom Groups , 2007, Combinatorics, Probability and Computing.
[4] László Babai. Long cycles in vertex-transitive graphs , 1979, J. Graph Theory.
[5] Daniela Kühn,et al. A Semiexact Degree Condition for Hamilton Cycles in Digraphs , 2010, SIAM J. Discret. Math..
[6] Tomasz Łuczak,et al. R(Cn,Cn,Cn)≤(4+o(1))n , 1999 .
[7] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[8] Vojtech Rödl,et al. Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels , 2011, J. Comb. Theory, Ser. A.
[9] Igor Pak,et al. Hamiltonian paths in Cayley graphs , 2009, Discret. Math..
[10] WERNER BALLMANN. AUTOMORPHISM GROUPS , 2011 .
[11] János Komlós,et al. Blow-up Lemma , 1997, Combinatorics, Probability and Computing.
[12] Joseph A. Gallian,et al. Hamiltonian cycles and paths in Cayley graphs and digraphs - A survey , 1996, Discret. Math..
[13] Gregory Gutin,et al. Digraphs - theory, algorithms and applications , 2002 .
[14] Dave Witte Morris,et al. A survey: Hamiltonian cycles in Cayley graphs , 1984, Discret. Math..
[15] János Komlós,et al. The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.
[16] H. Fleischner. The square of every two-connected graph is Hamiltonian , 1974 .
[17] John Adrian Bondy,et al. A method in graph theory , 1976, Discret. Math..
[18] William J. Cook,et al. Combinatorial optimization , 1997 .
[19] Daniela Kühn,et al. Finding Hamilton cycles in robustly expanding digraphs , 2012, J. Graph Algorithms Appl..
[20] R. Gorenflo,et al. Multi-index Mittag-Leffler Functions , 2014 .
[21] Vojtech Rödl,et al. The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.
[22] Daniela Kühn,et al. Packings in Dense Regular Graphs , 2005, Comb. Probab. Comput..
[23] Dragan Marusic,et al. Hamilton cycles and paths in vertex-transitive graphs - Current directions , 2009, Discret. Math..
[24] B. Sudakov,et al. Pseudo-random Graphs , 2005, math/0503745.
[25] Gábor N. Sárközy. A fast parallel algorithm for finding Hamiltonian cycles in dense graphs , 2009, Discret. Math..
[26] János Komlós,et al. An algorithmic version of the blow-up lemma , 1998, Random Struct. Algorithms.
[27] A. Schrijver. A Course in Combinatorial Optimization , 1990 .
[28] Fan Chung Graham,et al. Quasi-random graphs , 1988, Comb..
[29] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[30] D. Kuhn,et al. Surveys in Combinatorics 2009: Embedding large subgraphs into dense graphs , 2009, 0901.3541.
[31] L. Babai. Automorphism groups, isomorphism, reconstruction , 1996 .