A Worst-Case Analysis of the Sequential Method to List the Minimal Hitting Sets of a Hypergraph

It is open whether the minimal hitting sets of a hypergraph can be listed in time polynomial in the input and output size. We show that a well-known sequential approach described by Berge and studied since the 1950s is not polynomial in the above sense, even if we allow an optimal ordering of the edges. This answers a question posed by H. Hirsh. The proof uses hypergraphs based on read-once formulas. We also offer a generalization of this sequential approach.

[1]  Georg Gottlob,et al.  Identifying the Minimal Transversals of a Hypergraph and Related Problems , 1995, SIAM J. Comput..

[2]  Leonid Khachiyan,et al.  On the Complexity of Dualization of Monotone Disjunctive Normal Forms , 1996, J. Algorithms.

[3]  Raymond J. Nelson,et al.  Weak simplest normal truth functions , 1955, Journal of Symbolic Logic.

[4]  Dimitrios Gunopulos,et al.  Data mining, hypergraph transversals, and machine learning (extended abstract) , 1997, PODS.

[5]  Leslie Ann Goldberg,et al.  Efficient algorithms for listing combinatorial structures , 1993 .

[6]  Toshihide Ibaraki,et al.  Inner-core and Outer-core Functions of Partially Defined Boolean Functions , 1999, Discret. Appl. Math..

[7]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[8]  Raymond J. Nelson,et al.  Simplest normal truth functions , 1955, Journal of Symbolic Logic.

[9]  György Turán,et al.  On frequent sets of Boolean matrices , 1998, Annals of Mathematics and Artificial Intelligence.

[10]  Stephen H. Unger,et al.  Minimizing the Number of States in Incompletely Specified Sequential Switching Functions , 1959, IRE Trans. Electron. Comput..

[11]  Elias C. Stavropoulos,et al.  Journal of Graph Algorithms and Applications an Efficient Algorithm for the Transversal Hypergraph Generation , 2022 .

[12]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[13]  Georg Gottlob,et al.  Hypergraph Transversal Computation and Related Problems in Logic and AI , 2002, JELIA.

[14]  James Bailey,et al.  A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns , 2003, Third IEEE International Conference on Data Mining.

[15]  Michael E. Saks,et al.  Combinatorial characterization of read-once formulae , 1993, Discret. Math..

[16]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[17]  Toshihide Ibaraki,et al.  Complexity of Identification and Dualization of Positive Boolean Functions , 1995, Inf. Comput..

[18]  Vladimir Gurvich,et al.  On the Complexity of Generating Maximal Frequent and Minimal Infrequent Sets , 2002, STACS.

[19]  Heikki Mannila,et al.  Verkamo: Fast Discovery of Association Rules , 1996, KDD 1996.

[20]  Иван Константинович Шаранхаев,et al.  О бесповторных булевых функциях в предэлементарных монотонных базисах@@@On repetition-free Boolean functions over pre-elementary monotone bases , 2009 .

[21]  E. Lawler Covering Problems: Duality Relations and a New Method of Solution , 1966 .

[22]  Vladimir Gurvich,et al.  On the frequency of the most frequently occurring variable in dual monotone DNFs , 1997, Discret. Math..

[23]  Leonard Pitt,et al.  Generating all maximal independent sets of bounded-degree hypergraphs , 1997, COLT '97.

[24]  Jinyan Li,et al.  Mining border descriptions of emerging patterns from dataset pairs , 2005, Knowledge and Information Systems.

[25]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[26]  Georg Gottlob,et al.  New Results on Monotone Dualization and Generating Hypergraph Transversals , 2003, SIAM J. Comput..

[27]  Daniele Mundici Functions Computed by Monotone Boolean Formulas with no Repeated Variables , 1989, Theor. Comput. Sci..

[28]  Vladimir Gurvich,et al.  An Efficient Incremental Algorithm for Generating All Maximal Independent Sets in Hypergraphs of Bounded Dimension , 2000, Parallel Process. Lett..

[29]  Marek Karpinski,et al.  Learning read-once formulas with queries , 1993, JACM.

[30]  Vladimir Gurvich,et al.  On Generating the Irredundant Conjunctive and Disjunctive Normal Forms of Monotone Boolean Functions , 1999, Discret. Appl. Math..

[31]  Matthias Hagen Lower Bounds for Three Algorithms for the Transversal Hypergraph Generation , 2007, WG.

[32]  Vladimir Gurvich,et al.  Dual-Bounded Generating Problems: Partial and Multiple Transversals of a Hypergraph , 2001, SIAM J. Comput..