Structure prediction of aluminum nitride combining data mining and quantum mechanics

Aluminum nitride (AlN) is a compound with wide technological applications from optics to electronics. At ambient pressure and temperature, AlN has a hexagonal wurtzite type of structure, while the zinc blende (ZnS) type of structure is found in very thin films. At high pressures, a first-order phase transformation from the wurtzite structure to a rock salt type structure has been observed. This study covers the experimentally observed modifications of AlN, investigates their relations and searches for new possible modifications. Therefore, data mining of over 140 000 structure candidates has been performed, followed by local optimizations at the ab initio level with Hartree–Fock, LDA, and B3LYP functionals. Finally, twelve structure candidates have proven to be the most promising ones. These include the novel metastable AlN polytypes and the 5-5-type as a possible high pressure candidate of AlN.

[1]  J. C. Schön,et al.  How can Databases assist with the Prediction of Chemical Compounds? , 2014, Zeitschrift fur anorganische und allgemeine Chemie.

[2]  S. Umegaki,et al.  Modified method of electric‐field induced second‐harmonic generation , 1993 .

[3]  C. Tusche,et al.  Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. , 2007, Physical review letters.

[4]  W. Paszkowicz,et al.  Rietveld-refinement study of aluminium and gallium nitrides , 2004 .

[5]  J. Briest,et al.  Das quasi‐binäre System NiAsNi1,5Sn , 1965 .

[6]  R. Dovesi,et al.  Influence of the exchange-correlation functional in all-electron calculations of the vibrational frequencies of corundum (α-Al2O3) , 2006 .

[7]  J. C. Schön,et al.  Determination of candidate structures for simple ionic compounds through cell optimisation , 1995 .

[8]  Alexey A. Sokol,et al.  Zinc oxide: A case study in contemporary computational solid state chemistry , 2008, J. Comput. Chem..

[9]  Lu,et al.  Zinc-blende-wurtzite polytypism in semiconductors. , 1992, Physical review. B, Condensed matter.

[10]  S. Benhenda,et al.  Interfacial reactions in single-crystal-TiN (100)/Al/polycrystalline-TiN multilayer thin films , 1992 .

[11]  J. C. Schön,et al.  Prediction of structure candidates for zinc oxide as a function of pressure and investigation of their electronic properties , 2014 .

[12]  A. Guinier,et al.  Nomenclature of Polytype Structures Report of the International Union of Crystallography Ad-Hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures* , 1984 .

[13]  H. Nowotny,et al.  Das Dreistoffsystem: Molybd?n?Silizium?Kohlenstoff , 1954 .

[14]  W. Bragg,et al.  The Reflection of X-rays by Crystals , 1913 .

[15]  M. R. Wagner,et al.  Molecular Precursor Route to a Metastable Form of Zinc Oxide , 2010 .

[16]  J. C. Schön,et al.  Determination of symmetries and idealized cell parameters for simulated structures , 1999 .

[17]  J. C. Schön Enthalpy Landscapes of the Earth Alkaline Metal Oxides , 2004 .

[18]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[19]  K. Doll,et al.  Analytical Hartree–Fock gradients with respect to the cell parameter for systems periodic in three dimensions , 2004, cond-mat/0402666.

[20]  M. Durandurdu Pressure-induced phase transition in AlN: An ab initio molecular dynamics study , 2009 .

[21]  J. C. Schön,et al.  Stability of alkali metal halide polymorphs as a function of pressure. , 2008, Chemistry, an Asian journal.

[22]  J. C. Schön,et al.  A New Algorithm for Space-Group Determination , 1998 .

[23]  Oliver Ambacher,et al.  Growth and applications of Group III-nitrides , 1998 .

[24]  Aron Walsh,et al.  On the problem of cluster structure diversity and the value of data mining. , 2010, Physical chemistry chemical physics : PCCP.

[25]  Jin Cai,et al.  Microscopic mechanism of the wurtzite-to-rocksalt phase transition of the group-III nitrides from first principles , 2007 .

[26]  Angel Rubio,et al.  Theoretical study of the relative stability of structural phases in group-III nitrides at high pressures , 2000 .

[27]  K. Doll Analytical stress tensor and pressure calculations with the CRYSTAL code , 2010 .

[28]  J. C. Schön,et al.  Identification of promising chemical systems for the synthesis of new materials structure types: An ab initio minimization data mining approach , 2013 .

[29]  Dieter Fischer,et al.  Investigation of structural relations among the compounds in the ICSD using geometry based comparison techniques , 2012, Structural Chemistry.

[30]  K. Doll Implementation of analytical Hartree-Fock gradients for periodic systems , 2001, physics/0102049.

[31]  J. C. Schön,et al.  Ab initiostructure prediction for lead sulfide at standard and elevated pressures , 2011 .

[32]  H. Nowotny,et al.  Die Struktur von TiAs , 1955 .

[33]  Yucheng Lan,et al.  Blue emission and Raman scattering spectrum from AlN nanocrystalline powders , 2000 .

[34]  N. Alsén Röntgenographische Untersuchung der Kristallstrukturen von Magnetkies, Breithauptit, Pentlandit, Millerit und verwandten Verbindungen , 1925 .

[35]  M. Akaishi,et al.  High Pressure Synthesis of Rocksalt Type of AlN , 1990 .

[36]  M. Jansen,et al.  Low-activation solid-state syntheses by reducing transport lengths to atomic scales as demonstrated by case studies on AgNO(3) and AgO. , 2002, Journal of the American Chemical Society.

[37]  J. C. Schön,et al.  CMPZ– an algorithm for the efficient comparison of periodic structures , 2006 .

[38]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[39]  Stefano Curtarolo,et al.  Data-Mining-Driven Quantum Mechanics for the Prediction of Structure , 2006 .

[40]  James A. Snyder,et al.  LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO , 2000 .

[41]  Bartolomeo Civalleri,et al.  CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals , 2005 .

[42]  Theoretical investigations of novel zinc oxide polytypes and in-depth study of their electronic properties , 2015 .

[43]  C. F. Cline,et al.  The crystal structure of -beryllia , 1965 .

[44]  B. Monemar,et al.  III-V nitrides—important future electronic materials , 1999 .

[45]  H. Ishibashi,et al.  Electron density distribution in AlN from powder x-ray diffraction data by the maximum-entropy method , 1993 .

[46]  Mehmed Kantardzic,et al.  Data Mining: Concepts, Models, Methods, and Algorithms , 2002 .

[47]  S. Bhoraskar,et al.  Understanding the growth of micro and nano-crystalline AlN by thermal plasma process , 2012 .

[48]  J. C. Schön,et al.  Energy Landscape Investigations Using the Prescribed Path Method in the ZnO System , 2012 .

[49]  Bartolomeo Civalleri,et al.  Hartree–Fock geometry optimisation of periodic systems with the Crystal code , 2001 .

[50]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[51]  Christensen,et al.  Calculated structural phase transitions of aluminum nitride under pressure. , 1993, Physical review. B, Condensed matter.

[52]  Analytical Hartree–Fock gradients with respect to the cell parameter: systems periodic in one and two dimensions , 2005, physics/0512172.

[53]  M. Iwata,et al.  Synthesis of purified AlN nano powder by transferred type arc plasma , 2004 .

[54]  H. Föppl Die Kristallstrukturen der Alkaliperoxyde , 1957 .

[55]  K. Doll,et al.  Structure prediction based on ab initio simulated annealing for boron nitride , 2008, 0810.5476.

[56]  Analytical Hartree-Fock gradients for periodic systems , 2000, cond-mat/0011285.

[57]  A. Marco Saitta,et al.  Unifying description of the wurtzite-to-rocksalt phase transition in wide-gap semiconductors: The effect of d electrons on the elastic constants , 2004 .