The bacterial ‘enigma’: cracking the code of cell–cell communication

In recent years it has become clear that the production of N‐acyl homoserine lactones (N‐AHLs) is widespread in Gram‐negative bacteria. These molecules act as diffusible chemical communication signals (bacterial pheromones) which regulate diverse physiological processes including bioluminescence, antibiotic production, piasmid conjugal transfer and synthesis of exoenzyme virulence factors in plant and animal pathogens. The paradigm for N‐AHL production is in the bioluminescence (lux) phenotype of Photobacterium fischeri (formerly classified as Vibrio fischeri) where the signalling molecule N‐(3‐oxohexanoyl)‐L‐homoserine lactone (OHHL) is synthesized by the action of the Luxl protein. OHHL is thought to bind to the LuxR protein, allowing it to act as a positive transcriptional activator in an autoinduction process that physiologically couples cell density (and growth phase) to the expression of the bioluminescence genes. Based on the growing information on Luxl and LuxR homologues in other N‐AHL‐producing bacterial species such as Erwinia carotovora, Pseudomonas aeruginosa, Yersinia enterocolitica, Agrobacterium tumefaciens and Rhizobium legumino‐sarum, it seems that analogues of the P. fischeri lux autoinducer sensing system are widely distributed in bacteria. The general physiological function of these simple chemical signalling systems appears to be the modulation of discrete and diverse metabolic processes in concert with cell density. In an evolutionary sense, the elaboration and action of these bacterial pheromones can be viewed as an example of multi‐cellularity in prokaryotic populations.

[1]  E. Greenberg,et al.  The Vibrio fischeri luminescence gene activator LuxR is a membrane-associated protein , 1993, Journal of bacteriology.

[2]  A Fiechter,et al.  Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[3]  F. Barras,et al.  EXTRACELLULAR ENZYMES AND PATHOGENESIS OF SOFT-ROT ERWINIA , 1994 .

[4]  D. Distel,et al.  Bioluminescent symbionts of flashlight fishes and deep-sea anglerfishes form unique lineages related to the genus Vibrio , 1993, Nature.

[5]  P. Dunlap,et al.  Control of Vibrio fischeri lux gene transcription by a cyclic AMP receptor protein-luxR protein regulatory circuit , 1988, Journal of bacteriology.

[6]  P. Dunlap,et al.  Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri , 1994, Journal of bacteriology.

[7]  S. Swift,et al.  Gram-negative bacterial communication by N-acyl homoserine lactones: a universal language? , 1994, Trends in microbiology.

[8]  S. Ulitzur,et al.  Formation of the LuxR protein in the Vibrio fischeri lux system is controlled by HtpR through the GroESL proteins , 1992, Journal of bacteriology.

[9]  W. Fuqua,et al.  A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite , 1994, Journal of bacteriology.

[10]  D. Kaiser,et al.  How and why bacteria talk to each other , 1993, Cell.

[11]  M. Gambello,et al.  Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. , 1993, Science.

[12]  R. Dixon,et al.  Early events in the activation of plant defense responses , 1994 .

[13]  P. Reeves,et al.  The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. , 1993, The EMBO journal.

[14]  D. Wood,et al.  Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density , 1994, Journal of bacteriology.

[15]  G L Kenyon,et al.  Structural identification of autoinducer of Photobacterium fischeri luciferase. , 1981, Biochemistry.

[16]  E. Greenberg,et al.  The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Don B. Clewell,et al.  Bacterial sex pheromone-induced plasmid transfer , 1993, Cell.

[18]  M. Gambello,et al.  Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression , 1991, Journal of bacteriology.

[19]  R. Kolter,et al.  Sensing starvation: a homoserine lactone--dependent signaling pathway in Escherichia coli. , 1994, Science.

[20]  E. Greenberg,et al.  Genetic dissection of DNA binding and luminescence gene activation by the Vibrio fischeri LuxR protein , 1992, Journal of bacteriology.

[21]  E. Greenberg,et al.  Evidence that GroEL, not sigma 32, is involved in transcriptional regulation of the Vibrio fischeri luminescence genes in Escherichia coli , 1992, Journal of bacteriology.

[22]  J. Downie,et al.  Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae , 1992, Journal of bacteriology.

[23]  L. Rothfield,et al.  A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. , 1991, The EMBO journal.

[24]  S. Horinouchi,et al.  A‐factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus , 1994, Molecular microbiology.

[25]  M. Sebaihia,et al.  Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. , 1995, Microbiology.

[26]  P. Dunlap,et al.  Control of Vibrio fischeri luminescence gene expression in Escherichia coli by cyclic AMP and cyclic AMP receptor protein , 1985, Journal of bacteriology.

[27]  P. Murphy,et al.  Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones , 1993, Nature.

[28]  S. Ulitzur,et al.  GroESL proteins facilitate binding of externally added inducer by LuxR protein-containing E. coli cells. , 1993, Journal of bioluminescence and chemiluminescence.

[29]  J. Reiser,et al.  Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. , 1994, The Journal of biological chemistry.

[30]  M. Cámara,et al.  Characterisation of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two N‐acylhomoserine lactone signal molecules , 1995, Molecular microbiology.

[31]  E. Greenberg,et al.  Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ , 1992, Journal of bacteriology.

[32]  A. Darzins,et al.  Environmental Sensory Signals and Microbial Pathogenesis: Pseudomonas aeruginosa Infection in Cystic Fibrosis , 1989, Bio/Technology.

[33]  K. Nealson,et al.  Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System , 1970, Journal of bacteriology.

[34]  T. Baldwin,et al.  Identification of a distantly located regulatory element in the luxD gene required for negative autoregulation of the Vibrio fischeri luxR gene. , 1992, The Journal of biological chemistry.

[35]  G. Salmond,et al.  A novel strategy for the isolation of luxl homologues: evidence for the widespread distribution of a LuxR:Luxl superfamily in enteric bacteria , 1993, Molecular microbiology.

[36]  G. Salmond,et al.  A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. , 1992, Gene.

[37]  M. Winson,et al.  Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1 , 1995, Molecular microbiology.

[38]  T. Baldwin,et al.  Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Salmond,et al.  N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. , 1992, The Biochemical journal.

[40]  F. Barras Extracellular Enzymes and Pathogensis of Soft-Rot Erwinia , 1994 .

[41]  E. Greenberg,et al.  Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa , 1994, Journal of bacteriology.

[42]  Stephen K. Farrand,et al.  Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction , 1993, Nature.

[43]  C. Keel,et al.  Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Silverman,et al.  Regulation of Expression of Bacterial Genes for Bioluminescence , 1986 .

[45]  S. Hill,et al.  Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. , 1994, Molecular plant-microbe interactions : MPMI.

[46]  E. Greenberg,et al.  Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system , 1985, Journal of bacteriology.

[47]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[48]  J. S. Wells,et al.  SQ 27,860, a simple carbapenem produced by species of Serratia and Erwinia. , 1982, The Journal of antibiotics.

[49]  E. Meighen,et al.  Molecular biology of bacterial bioluminescence. , 1991, Microbiological reviews.

[50]  M. Pirhonen,et al.  A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. , 1993, The EMBO journal.

[51]  W G Beattie,et al.  Multiple control elements for the uvrC gene unit of Escherichia coli. , 1986, Nucleic acids research.

[52]  G. Salmond,et al.  Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N-(3-oxohexanoyl)-L-homoserine lactone. , 1993, The Journal of antibiotics.

[53]  K. Nealson,et al.  Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri , 1983, Cell.

[54]  N. Gutterson Microbial Fungicides: Recent Approaches to Elucidating Mechanisms , 1990 .

[55]  S. Ulitzur,et al.  The transcription of bacterial luminescence is regulated by sigma 32. , 1988, Journal of bioluminescence and chemiluminescence.

[56]  S. Henikoff,et al.  Finding protein similarities with nucleotide sequence databases. , 1990, Methods in enzymology.

[57]  E. Greenberg,et al.  Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.