Modular design of data-parallel graph algorithms

Amorphous Data Parallelism has proven to be a suitable vehicle for implementing concurrent graph algorithms effectively on multi-core architectures. In view of the growing complexity of graph algorithms for information analysis, there is a need to facilitate modular design techniques in the context of Amorphous Data Parallelism. In this paper, we investigate what it takes to formulate algorithms possessing Amorphous Data Parallelism in a modular fashion enabling a large degree of code re-use. Using the betweenness centrality algorithm, a widely popular algorithm in the analysis of social networks, we demonstrate that a single optimisation technique can suffice to enable a modular programming style without loosing the efficiency of a tailor-made monolithic implementation.