Macrocyclic Tetraethynylethene Molecular Scaffolding: Perethynylated aromatic dodecadehydro[18]annulenes, antiaromatic octadehydro[12]annulenes, and expanded radialenes

Tetraethynylethene (3,4-diethynylhex-3-ene-1,5-diyne) molecular scaffolding provided access to novel macrocyclic nanometer-sized C-rich molecules with unusual structural and electronic properties. Starting from cis-bis-deprotected cis-bis(trialkylsilyl)protected tetraethynylethenes, the per(silylethynyl)ated octadehydro[12]annulenes 1 and 2 and the corresponding dodecadehydro[18]annulenes 4 and 5 were prepared by oxidative Hay coupling. X-Ray crystal-structure analyses of (i-Pr)3Si-protected 2 and Me3Si-protected 4 showed that both annulene perimeters are perfectly planar. Electronic absorption spectral comparisons provided strong evidence that the macro rings in the deep-purple-colored 1 and 2 are antiaromatic (4n π-electrons), whereas those in yellow 4 and 5 are aromatic ((4n + 2) π-electrons). Although unstable in solution, the antiaromatic compound 2 gave high-melting crystals in which the individual octadehydro[12]annulene chromophores are isolated and stabilized in a matrix-type environment formed by the bulky (i-Pr)3Si groups. Electrochemical studies demonstrated that the antiaromatic octadehydro[12]annulene 2 undergoes two stepwise one-electron reductions more readily that the aromatic chromophore 5. This redox behavior is best explained by the formation of an aromatic (4n + 2) π-electron dianion from 2, whereas 5 loses its aromaticity upon reduction. The Me3Si derivative 4 was deprotected with borax in MeOH/THF to give the highly unstable hexaethynyl-dodecadehydro[18]annulene 6, a C30H6 isomer and macrocyclic precursor to a two-dimensional all-C-network. Deprotection of 2 did not give isolable amounts of tetraethynyl-octadehydro[12]annulene 3 due to the extreme instability of the latter. Starting from dimeric and trimeric acyclic tetraethynylethene oligomers, a series of expanded radialenes were obtained. They possess large C-cores with silylethynyl-protected peripheral valences and can be viewed as persilylated C40 (7), C50 (8), and C60 (9) isomers. These expanded C-sheets are high-melting, highly stable, soluble materials which were readily characterized by laser-desorption time-of-flight (LD-TOF) mass spectrometry. Due to inefficient macrocyclic cross-conjugation and/or non-planarity, the extent of π-electron delocalization in 7–9 is limited to the longest linearly conjugated π-electron fragment. In agreement with these properties, all three expanded radialenes exhibited similar redox behavior; they are difficult to oxidize but undergo several reversible one-electron reductions in similar potential ranges. Presumably, the reduced π-electron delocalization is also at the origin of the particularly high stability of 7–9.

[1]  F. Diederich,et al.  Acyclic Tetraethynylethene Molecular Scaffolding: Multinanometer‐sized linearly conjugated rods with the poly(triacetylene) backbone and cross‐conjugated expanded dendralenes , 1995 .

[2]  F. Diederich,et al.  Hexakis(trimethylsilylethynyl)[3]radialene: A Carbon‐Rich Chromophore with Unusual Electronic Properties , 1995 .

[3]  Walter Amrein,et al.  Hexakis(trimethylsilylethinyl)[3]radialen: ein kohlenstoffreicher Chromophor mit ungewöhnlichen elektronischen Eigenschaften , 1995 .

[4]  F. Diederich,et al.  Tetraethynylethenes: Fully cross-conjugated π-electron chromophores and molecular scaffolds for all-carbon networks and carbon-rich nanomaterials , 1995 .

[5]  J. Elguero,et al.  Die Farben von C60‐Lösungen , 1995 .

[6]  Y. Kuwatani,et al.  Synthesis of the first 3,6,9,15,18,18-hexa-substituted-1,2,4,5,7,8,10,11,13,14,16,17-dodecadehydro[18]annulenes with D6h-symmetry , 1995 .

[7]  R. Hoffmann,et al.  A Hypothetical Dense 3,4-Connected Carbon Net and Related B2C and CN2 Nets Built from 1,4-Cyclohexadienoid Units , 1994 .

[8]  F. Diederich,et al.  Polytriacetylenes: Conjugated polymers with a novel all‐carbon backbone , 1994 .

[9]  A. Hirsch Chemistry of Fullerenes , 1994 .

[10]  F. Diederich,et al.  Synthetic routes to the cyclo[n]carbons , 1994 .

[11]  U. Bunz POLYYNES-FASCINATING MONOMERS FOR THE CONSTRUCTION OF CARBON NETWORKS , 1994 .

[12]  Charles L. Wilkins,et al.  Phenylacetylene Dendrimers by the Divergent, Convergent, and Double-Stage Convergent Methods , 1994 .

[13]  Uwe H. F. Bunz Polyine – faszinierende Monomere zum Aufbau von Kohlenstoffnetzwerken? , 1994 .

[14]  Jeffrey S. Moore,et al.  Geometrically-Controlled and Site-Specifically-Functionalized Phenylacetylene Macrocycles , 1994 .

[15]  François Diederich,et al.  Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds , 1994, Nature.

[16]  L. T. Scott,et al.  Hexaspiro[2.4.2.4.2.4.2.4.2.4.2.4]dotetraconta‐4,6,11,13,18,20,25,27,32,34,39,41‐dodecayne An Exploding [6]Rotane , 1994 .

[17]  F. Diederich,et al.  Stable Soluble Conjugated Carbon Rods with a Persilylethynylated Polytriacetylene Backbone , 1994 .

[18]  F. Diederich,et al.  Stabile, lösliche, konjugierte Kohlenstoffstäbe mit einem persilylethinylierten Polytriacetylen‐Rückgrat , 1994 .

[19]  F. Diederich,et al.  Expanded Radialenes: A Novel Class of Cross‐Conjugated Macrocycles , 1994 .

[20]  T. Swager,et al.  Synthesis of Diacetylene Macrocycles Derived from 1,2-Diethynyl Benzene Derivatives: Structure and Reactivity of the Strained Cyclic Dimer , 1994 .

[21]  Jeffrey S. Moore,et al.  LIQUID CRYSTALS BASED ON SHAPE-PERSISTENT MACROCYCLIC MESOGENS , 1994 .

[22]  François Diederich,et al.  Expandierte Radialene: Eine neue Klasse kreuzkonjugierter Makrocyclen , 1994 .

[23]  A. D. Meijere,et al.  HEXASPIRO2.4.2.4.2.4.2.4.2.4.2.4DOTETRACONTA-4,6,11,13,18,20,25,27,32,34,39,41-DODECAIN : EIN EXPLODIERENDES 6ROTAN , 1994 .

[24]  F. Diederich,et al.  Synthesis of a Fullerene Derivative of Benzo[18]crown‐6 by Diels‐Alder Reaction: Complexation Ability, Amphiphilic Properties, and X‐Ray Crystal Structure of a Dimethoxy‐1,9‐(methano[1,2]benzenomethano)fullerene[60] Benzene Clathrate , 1993 .

[25]  Ray H. Baughman,et al.  Crystalline networks with unusual predicted mechanical and thermal properties , 1993, Nature.

[26]  L. Echegoyen,et al.  Electrochemically-Reversible, Single-Electron Oxidation of C60 and C70 , 1993 .

[27]  John E. Anthony,et al.  Stabile, von Tetraethinylethen abgeleitete [12]- und [18]Annulene† , 1993 .

[28]  F. Diederich,et al.  Stable [12]‐ and [18]Annulenes Derived from Tetraethynylethene , 1993 .

[29]  N. Finney,et al.  Synthesis of 1,6-didehydro[10]annulene. Observation of its exceptionally facile rearrangement to form the biradical 1,5-dehydronaphthalene , 1992 .

[30]  K. Vollhardt,et al.  Die ersten Hexabutadiinylbenzolderivate: Synthesen und Strukturen† , 1992 .

[31]  K. Vollhardt,et al.  The First Hexabutadiynylbenzenes: Synthesis and Structures , 1992 .

[32]  R. Cotter,et al.  Time-of-flight mass spectrometry for the structural analysis of biological molecules. , 1992, Analytical chemistry.

[33]  Jeffrey S. Moore,et al.  Synthesis of three-dimensional nanoscaffolding , 1992 .

[34]  François Diederich,et al.  Synthetic approaches toward molecular and polymeric carbon allotropes , 1992 .

[35]  Y. Rubin,et al.  Strategien zum Aufbau molekularer und polymerer Kohlenstoffallotrope , 1992 .

[36]  G. Maas,et al.  Darstellung und Eigenschaften, Reaktionen und Anwendungsmöglichkeiten von Radialenen , 1992 .

[37]  H. Hopf,et al.  Preparation and Properties, Reactions, and Applications of Radialenes , 1992 .

[38]  J. Henion,et al.  Structural characterization of protein tryptic peptides via liquid chromatography/mass spectrometry and collision-induced dissociation of their doubly charged molecular ions. , 1991, Analytical chemistry.

[39]  F. Wudl,et al.  The Higher Fullerenes: Isolation and Characterization of C76, C84, C90, C94, and C70O, an Oxide of D5h-C70 , 1991, Science.

[40]  K. Sonogashira 2.5 – Coupling Reactions Between sp Carbon Centers , 1991 .

[41]  Y. Rubin,et al.  Characterization of the soluble all-carbon molecules C60 and C70 , 1990 .

[42]  F. Diederich,et al.  Electronic and structural properties of the cyclobutenodehydroannulenes , 1990 .

[43]  F. Diederich,et al.  Precursors to the cyclo[n]carbons: [4n+2]- and [4n]annulenes with unusual stabilities , 1989 .

[44]  S. Denmeade,et al.  Efficient triple coupling reaction to produce a self-adjusting molecular cage , 1985 .

[45]  F. Sondheimer,et al.  Synthesis and reactions of 5,6,11,12-tetradehydrodibenzo[a,e]cyclooctene and 5,6-didehydrodibenzo[a,e]cyclooctene , 1981 .

[46]  E. Woo,et al.  Unsaturated macrocyclic compounds. LXXXIX. Dianion of [18]annulene , 1973 .

[47]  J. Oth,et al.  Radical anion and the dianion of [16] annulene , 1972 .

[48]  D. Walton,et al.  Friedel-crafts reactions of bis(trimethylsilyl)polyynes with acyl chlorides; a useful route to terminal-alkynyl ketones , 1972 .

[49]  F. Sondheimer,et al.  Unsaturated macrocyclic compounds. LXXIII. Synthesis of 1,2-diethynylcyclohexene and its oxidation to a tetradehydro[12]annulene derivative , 1971 .

[50]  H. A. Staab,et al.  Intramolekulare Wechselwirkungen zwischen Dreifachbindungen, VI Parallele Dreifachbindungen: Versuche zur Synthese des 7.8.15.16‐Tetradehydro‐cyclodeca[1.2.3‐de: 6.7.8‐d′ e′]‐dinaphthalins , 1971 .

[51]  H. A. Staab,et al.  Zur Konjugation in makrocyclischen Bindungssystemen, XVIII. Benzo[12]annulene: 5.6.11.12‐Tetradehydro‐tribenzo[a.e.i]cyclododecen, 11.12.15.16‐Tetradehydro‐dibenzo[a.e]cyclododecen und 5.6.11.12.15.16‐Hexadehydro‐dibenzo[a.e]cyclododecen , 1970 .

[52]  W. Okamura,et al.  1,3,7,9,13,15-Hexadehydro[18]annulene , 1967 .

[53]  P. Garratt,et al.  1,5,9-Tridehydro[12]annulene1 , 1966 .

[54]  E. Heilbronner The electronic spectra of [n]-radialenes , 1966 .

[55]  R. D. Allendoerfer,et al.  Electrolytic Reduction of Cyclooctatetraene1 , 1965 .

[56]  A. S. Hay Oxidative Coupling of Acetylenes. II1 , 1962 .

[57]  F. Bohlmann,et al.  Polyacetylenverbindungen, XXX. Synthese von natürlich vorkommenden Polyacetylenverbindungen mit endständigen Dreifachbindungen , 1961 .