Synchronization of integer order and fractional order Chua's systems using robust observer

In this paper we present a fractional order Chua’s circuit that behaves chaotically based on the use of a fractional order low pass filter. Next, an integer order robust observer will be designed to synchronize the fractional order Chua’s circuit as well as integer order Chua’s circuit with unknown nonlinearity. This method consists in designing a Luenberger like observer appended with an estimator of the unknown nonlinear function. The estimator assumes that the nonlinear function is slowly varying and that the observer converges quickly and uses the backward difference formula to approximate the state derivative. The efficiency of the proposed method is confirmed using numerical simulations.

[1]  Michael Peter Kennedy,et al.  Three steps to chaos. II. A Chua's circuit primer , 1993 .

[2]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[3]  M. J. Hatcher,et al.  Modeling Biological Systems: Principles and Applications , 1997 .

[4]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[5]  Chi K. Tse,et al.  Chaos in Power Electronics: An Overview , 2002, CCS 2002.

[6]  Xing-yuan Wang,et al.  Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control , 2009 .

[7]  Guojun Peng,et al.  Synchronization of fractional order chaotic systems , 2007 .

[8]  Michael Peter Kennedy Three Steps to Chaos-Part I: Evolution , 1993 .

[9]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[10]  James W. Haefner,et al.  Modeling Biological Systems , 1996, Springer US.

[11]  Ömer Morgül,et al.  Inductorless realisation of Chua oscillator , 1995 .

[12]  Hao Zhu,et al.  Chaos and synchronization of the fractional-order Chua’s system , 2009 .

[13]  Subir Das,et al.  Synchronization of fractional order chaotic systems using active control method , 2012 .

[14]  Michael Peter Kennedy,et al.  Three steps to chaos. I. Evolution , 1993 .

[15]  Tsung-Chih Lin,et al.  Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems , 2011 .

[16]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[17]  YangQuan Chen,et al.  Linear Feedback Control: Analysis and Design with MATLAB , 2008 .

[18]  Moez Feki,et al.  Observer-based synchronization of chaotic systems with unknown nonlinear function , 2009 .

[19]  Jian-An Fang,et al.  Synchronization of N-coupled fractional-order chaotic systems with ring connection , 2010 .

[20]  Moez Feki,et al.  A New Look at Chua's Circuit , 2011, Int. J. Bifurc. Chaos.

[21]  Naser Pariz,et al.  A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter , 2009 .

[22]  H. Delavari,et al.  Active sliding observer scheme based fractional chaos synchronization , 2012 .