An update on semisimple quantum cohomology and F-manifolds

[1]  V. Golyshev A remark on minimal Fano threefolds , 2008, 0803.0031.

[2]  D. Auroux,et al.  Mirror symmetry for Del Pezzo surfaces: Vanishing cycles and coherent sheaves , 2005, math/0506166.

[3]  S. Merkulov,et al.  PROP Profile of Poisson Geometry , 2004, math/0401034.

[4]  D. Orlov Derived categories of coherent sheaves and motives , 2005, math/0512620.

[5]  Y. Manin Manifolds with multiplication on the tangent sheaf , 2005, math/0502578.

[6]  G. Ciolli ON THE QUANTUM COHOMOLOGY OF SOME FANO THREEFOLDS AND A CONJECTURE OF DUBROVIN , 2004, math/0403300.

[7]  Arend Bayer Semisimple Quantum Cohomology and Blow-ups , 2004, math/0403260.

[8]  Y. Manin F-manifolds with flat structure and Dubrovin's duality , 2004, math/0402451.

[9]  S. Merkulov,et al.  Operads, deformation theory and F-manifolds , 2002, math/0210478.

[10]  C. Hertling Frobenius Manifolds and Moduli Spaces for Singularities , 2002 .

[11]  C. Hertling Frobenius manifolds and moduli spaces for singularities: Frontmatter , 2002 .

[12]  V. Golyshev Riemann-Roch variations , 2001 .

[13]  S. Barannikov Semi-infinite variations of Hodge structures and integrable hierarchies of KdV type , 2001, math/0108148.

[14]  Y. Manin,et al.  Semi)simple exercises in quantum cohomology , 2001, math/0103164.

[15]  Василий Викторович Голышев,et al.  Вариации Римана - Роха@@@Riemann - Roch variations , 2001 .

[16]  S. Barannikov Semi-infinite Hodge structures and mirror symmetry for projective spaces , 2000 .

[17]  P. Newstead FROBENIUS MANIFOLDS, QUANTUM COHOMOLOGY, AND MODULI SPACES (American Mathematical Society Colloquium Publications 47) , 2000 .

[18]  Yuri I. Manin,et al.  Frobenius manifolds, quantum cohomology, and moduli spaces , 1999 .

[19]  Y. Manin,et al.  Weak Frobenius manifolds , 1998, math/9810132.

[20]  B. Dubrovin Geometry and analytic theory of Frobenius manifolds , 1998, math/9807034.

[21]  A. Givental A mirror theorem for toric complete intersections , 1997, alg-geom/9701016.

[22]  E. Zaslow Solitons and helices: The search for a math-physics bridge , 1994, hep-th/9408133.