Auger coefficients in type-II InAs/Ga1−xInxSb quantum wells

Two different approaches, a photoconductive response technique and a correlation of lasing thresholds with theoretical threshold carrier concentrations have been used to determine Auger lifetimes in InAs/GaInSb quantum wells. For energy gaps corresponding to 3.1–4.8 μm, the room-temperature Auger coefficients for seven different samples are found to be nearly an order-of-magnitude lower than typical type-I results for the same wavelength. The data imply that at this temperature, the Auger rate is relatively insensitive to details of the band structure.

[1]  J. Bajaj,et al.  Minority carrier lifetime in LPE Hg1−x Cdx Te , 1983 .

[2]  Room-temperature low-threshold type-II quantum-well lasers at 4.5 μm , 1997, IEEE Photonics Technology Letters.

[3]  Jerry R. Meyer,et al.  Type II mid-IR lasers operating above room temperature , 1996 .

[4]  N. Magnea,et al.  Resonant-cavity infrared optoelectronic devices , 1997 .

[5]  T. Elsaesser,et al.  Fast recombination processes in lead chalcogenide semiconductors studied via transient optical nonlinearities , 1995 .

[6]  I. Vurgaftman,et al.  High-temperature 4.5-/spl mu/m type-II quantum-well laser with Auger suppression , 1997, IEEE Photonics Technology Letters.

[7]  Georgy G. Zegrya,et al.  Theory of the recombination of nonequilibrium carriers in type-II heterostructures , 1996 .

[8]  Jerry R. Meyer,et al.  Methods for magnetotransport characterization of IR detector materials , 1993 .

[9]  Thomas F. Boggess,et al.  III-V interband 5.2 μm laser operating at 185 K , 1997 .

[10]  Jerry R. Meyer,et al.  Auger lifetime in InAs, InAsSb, and InAsSb-InAlAsSb quantum wells , 1995 .

[11]  Y. Cuminal,et al.  Observation of room-temperature laser emission from type III InAs/GaSb multiple quantum well structures , 1997 .

[12]  Christopher L. Felix,et al.  Role of internal loss in limiting type-II mid-IR laser performance , 1998 .

[13]  Yong-Hang Zhang,et al.  Midwave infrared stimulated emission from a GaInSb/InAs superlattice , 1995 .

[14]  H. Q. Le,et al.  Low-loss high-efficiency and high-power diode-pumped mid-infrared GaInSb/InAs quantum well lasers , 1998 .

[15]  J. Faurie,et al.  Minority‐carrier lifetime in p‐type (111)B HgCdTe grown by molecular‐beam epitaxy , 1990 .

[16]  Jerry R. Meyer,et al.  AUGER LIFETIME ENHANCEMENT IN INAS-GA1-XINXSB SUPERLATTICES , 1994 .

[17]  George W. Turner,et al.  Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm , 1998 .

[18]  L. West,et al.  Recent advances in Sb-based midwave-infrared lasers , 1997 .

[19]  J. Bonnet-Gamard,et al.  Optical gain and laser emission in HgCdTe heterostructures , 1995 .

[20]  Christopher L. Felix,et al.  Midinfrared vertical-cavity surface-emitting laser , 1997 .

[21]  Carrier recombination dynamics in a (GaInSb/InAs)/AlGaSb superlattice multiple quantum well , 1996 .

[22]  Christoph H. Grein,et al.  Theoretical performance limits of 2.1–4.1 μm InAs/InGaSb, HgCdTe, and InGaAsSb lasers , 1995 .

[23]  C. H. Grein,et al.  Theoretical performance of InAs/ InxGa1−xSb superlattice‐based midwave infrared lasers , 1994 .

[24]  M. Pilkuhn,et al.  Quantitative evaluation of gain and losses in quaternary lasers , 1985 .

[25]  Christopher L. Felix,et al.  NEAR-ROOM-TEMPERATURE MID-INFRARED INTERBAND CASCADE LASER , 1998 .

[26]  P. D. Dapkus,et al.  Effect of Auger recombination and differential gain on the temperature sensitivity of 1.5 μm quantum well lasers , 1993 .