PPARδ Promotes Running Endurance by Preserving Glucose.

[1]  W. Fan,et al.  Exercise Mimetics: Impact on Health and Performance. , 2017, Cell metabolism.

[2]  W. Fan,et al.  PPARs and ERRs: molecular mediators of mitochondrial metabolism. , 2015, Current opinion in cell biology.

[3]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[4]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[5]  Robert W. Williams,et al.  Systems Genetics of Metabolism: The Use of the BXD Murine Reference Panel for Multiscalar Integration of Traits , 2012, Cell.

[6]  Evan G. Williams,et al.  NCoR1 Is a Conserved Physiological Modulator of Muscle Mass and Oxidative Function , 2011, Cell.

[7]  Lior Pachter,et al.  Identification of novel transcripts in annotated genomes using RNA-Seq , 2011, Bioinform..

[8]  R. Evans,et al.  Nuclear receptors and AMPK: resetting metabolism. , 2011, Cold Spring Harbor symposia on quantitative biology.

[9]  J. Dixon,et al.  Bcl-6 and NF-kappaB cistromes mediate opposing regulation of the innate immune response. , 2010, Genes & development.

[10]  B. Spiegelman,et al.  PPARδ Agonism Activates Fatty Acid Oxidation via PGC-1α but Does Not Increase Mitochondrial Gene Expression and Function , 2009, The Journal of Biological Chemistry.

[11]  M. Febbraio,et al.  Overexpression of Carnitine Palmitoyltransferase-1 in Skeletal Muscle Is Sufficient to Enhance Fatty Acid Oxidation and Improve High-Fat Diet–Induced Insulin Resistance , 2009, Diabetes.

[12]  R. Evans,et al.  AMPK and PPARδ Agonists Are Exercise Mimetics , 2008, Cell.

[13]  Maria M. Mihaylova,et al.  AMPK and PPARδ Agonists Are Exercise Mimetics , 2008, Cell.

[14]  R. Mortensen,et al.  Peroxisome Proliferator-Activated Receptor-γ–Mediated Effects in the Vasculature , 2008, Circulation research.

[15]  Michael Schuler,et al.  PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes , 2006 .

[16]  Michael Schuler,et al.  PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. , 2006, Cell metabolism.

[17]  R. Evans,et al.  Regulation of Muscle Fiber Type and Running Endurance by PPARδ , 2004, PLoS biology.

[18]  Robert W. Williams,et al.  A new set of BXD recombinant inbred lines from advanced intercross populations in mice , 2004, BMC Genetics.

[19]  Johan Auwerx,et al.  Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  G. Muscat,et al.  The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. , 2003, Molecular endocrinology.

[21]  Jourdan J. Pouliot,et al.  development and , 2019 .

[22]  R. Evans,et al.  Peroxisome-Proliferator-Activated Receptor δ Activates Fat Metabolism to Prevent Obesity , 2003, Cell.

[23]  R. Evans,et al.  Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. , 2003, Cell.

[24]  J. Auwerx,et al.  Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  G. Muscat,et al.  The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. , 2003, Molecular endocrinology.

[26]  R. Evans,et al.  Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Hamilton,et al.  Skeletal muscle adaptation to exercise: a century of progress. , 2000, Journal of applied physiology.

[28]  F. Booth,et al.  Biochemical adaptations to endurance exercise in muscle. , 1976, Annual review of physiology.

[29]  J. Holloszy,et al.  Adaptation of muscle to exercise. Increase in levels of palmityl Coa synthetase, carnitine palmityltransferase, and palmityl Coa dehydrogenase, and in the capacity to oxidize fatty acids. , 1971, The Journal of clinical investigation.