Sisyphus cooling of electrically trapped polyatomic molecules

[1]  G. Rempe,et al.  Storage and adiabatic cooling of polar molecules in a microstructured trap. , 2011, Physical review letters.

[2]  G. Meijer,et al.  Accumulation of Stark-decelerated NH molecules in a magnetic trap , 2011 .

[3]  E. Hinds,et al.  Improved measurement of the shape of the electron , 2011, Nature.

[4]  T. Freegarde,et al.  Cavity cooling of atoms: within and without a cavity , 2011, 1101.2739.

[5]  J. Barry,et al.  Laser cooling of a diatomic molecule , 2010, Nature.

[6]  M. Zeppenfeld,et al.  Calculating the fine structure of a Fabry-Perot resonator using spheroidal wave functions. , 2010, Optics express.

[7]  Gerhard Rempe,et al.  Cavity-enhanced Rayleigh scattering , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[8]  G. Rempe,et al.  Optoelectrical cooling of polar molecules , 2009, 0904.4144.

[9]  P. Żuchowski,et al.  Low-energy collisions of NH3 and ND3 with ultracold Rb atoms , 2009, 0902.4548.

[10]  G. Rempe,et al.  Continuous guided beams of slow and internally cold polar molecules. , 2008, Faraday discussions.

[11]  M. Raizen,et al.  Single-photon molecular cooling , 2008, 0808.1383.

[12]  J. Ye,et al.  A High Phase-Space-Density Gas of Polar Molecules , 2008, Science.

[13]  R. Krems Cold controlled chemistry. , 2008, Physical chemistry chemical physics : PCCP.

[14]  P. Zoller,et al.  A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators , 2006 .

[15]  P. Soldán,et al.  Ultracold Rb-OH collisions and prospects for sympathetic cooling. , 2006, Physical review letters.

[16]  D. Nagy,et al.  Self-organization of a laser-driven cold gas in a ring cavity , 2006 .

[17]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2005, quant-ph/0512222.

[18]  Jun Ye,et al.  Production of cold formaldehyde molecules for study and control of chemical reaction. , 2005, physics/0508120.

[19]  A. Bishop,et al.  Optical stark decelerator for molecules. , 2004, Physical review letters.

[20]  G. Rempe,et al.  Slow ammonia molecules in an electrostatic quadrupole guide , 2004 .

[21]  D. Glenn,et al.  Microwave traps for cold polar molecules , 2004, physics/0407038.

[22]  M. Lewenstein,et al.  Quantum phases of dipolar bosons in optical lattices. , 2001, Physical review letters.

[23]  D. DeMille Quantum computation with trapped polar molecules. , 2001, Physical review letters.

[24]  Chu,et al.  Laser cooling of atoms, ions, or molecules by coherent scattering , 2000, Physical review letters.

[25]  D. Herschbach,et al.  A Mechanical Means to Produce Intense Beams of Slow Molecules , 1999 .

[26]  C. Bordé,et al.  LIMIT ON THE PARITY NONCONSERVING ENERGY DIFFERENCE BETWEEN THE ENANTIOMERS OF A CHIRAL MOLECULE BY LASER SPECTROSCOPY , 1999 .

[27]  G. Berden,et al.  Decelerating neutral dipolar molecules , 1999 .

[28]  R. Decarvalho,et al.  Magnetic trapping of calcium monohydride molecules at millikelvin temperatures , 1998, Nature.

[29]  E. Hinds TESTING TIME REVERSAL SYMMETRY USING MOLECULES , 1997 .

[30]  D. Pritchard Cooling Neutral Atoms in a Magnetic Trap for Precision Spectroscopy , 1983 .

[31]  G. Guelachvili,et al.  Extensive high-resolution study of the crowded rovibrational CH3F spectrum around 3000 cm−1 , 1981 .

[32]  David J. Wineland,et al.  Laser cooling of atoms , 1979 .

[33]  Willis B. Person,et al.  Dipole moment derivatives and infrared intensities. II. Polar tensors in methyl halide molecules , 1976 .

[34]  J. Overend,et al.  The i.r. rotation—vibration spectrum of CH3F in the region of 3000 cm−1 , 1976 .

[35]  Walter Gordy,et al.  Microwave Molecular Spectra , 1970 .

[36]  H. H. Nielsen,et al.  The Infra-Red Spectrum of Methyl Fluoride , 1947 .