Observer design for a class of nonlinear ODE-PDE cascade systems

Abstract The problem of state-observation is addressed for nonlinear systems that can be modeled by an ODE–PDE series association. The ODE subsystem assumes a triangular structure while the PDE element is of heat diffusion type. The aim is to accurately estimate online the state vector of the ODE subsystem and the distributed state of the PDE element. One major difficulty is that the state observation must only rely on the global system output i.e. the PDE state at the terminal boundary. In particular, the connection point between the ODE and the PDE blocks is not accessible to measurements. The observation problem is dealt with by designing a high-gain type observer. Sufficient conditions involving the PDE domain length are formally established that ensure the observer exponential convergence.

[1]  Emilia Fridman Observers and initial state recovering for a class of hyperbolic systems via Lyapunov method , 2013, Autom..

[2]  Songmu Zheng,et al.  Nonlinear evolution equations , 2004 .

[3]  H. Shim,et al.  A Simple Observer for Nonlinear Systems in x-coordinate using Lipschitz Extension Technique , 2000 .

[4]  G. Besançon,et al.  On adaptive observers for state affine systems , 2006 .

[5]  Chee Pin Tan,et al.  Sliding mode observers for fault detection and isolation , 2002 .

[6]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[7]  Marius Tucsnak,et al.  Recovering the initial state of an infinite-dimensional system using observers , 2010, Autom..

[8]  R. Jackson Inequalities , 2007, Algebra for Parents.

[9]  Miroslav Krstic,et al.  Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays , 2007, CDC.

[10]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[11]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[12]  H. Khalil,et al.  Semiglobal stabilization of a class of nonlinear systems using output feedback , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[13]  J. Gauthier,et al.  High gain estimation for nonlinear systems , 1992 .

[14]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[15]  Miroslav Krstic,et al.  Compensating actuator and sensor dynamics governed by diffusion PDEs , 2009, Syst. Control. Lett..

[16]  Hassan Hammouri,et al.  Observers for Infinite Dimensional Bilinear Systems , 1997, Eur. J. Control.

[17]  H. Shim,et al.  Semi-global observer for multi-output nonlinear systems , 2001 .

[18]  J. Corriou Chapter 12 – Nonlinear Control , 2017 .

[19]  L. Fridman,et al.  Higher‐order sliding‐mode observer for state estimation and input reconstruction in nonlinear systems , 2008 .

[20]  J. Slotine,et al.  On Sliding Observers for Nonlinear Systems , 1986, 1986 American Control Conference.

[21]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[22]  R. Triggiani,et al.  Control Theory for Partial Differential Equations: Continuous and Approximation Theories , 2000 .

[23]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[24]  Hans Zwart,et al.  A Luenberger observer for an infinite dimensional bilinear system: a UV disinfection example , 2007 .

[25]  C. SIAMJ.,et al.  SAMPLED-DATA DISTRIBUTED H∞ CONTROL OF TRANSPORT REACTION SYSTEMS∗ , 2013 .

[26]  Emilia Fridman,et al.  Sampled-Data Distributed HINFINITY Control of Transport Reaction Systems , 2013, SIAM J. Control. Optim..

[27]  M. Krstić,et al.  Backstepping observers for a class of parabolic PDEs , 2005, Syst. Control. Lett..

[28]  C.-Z. Xu,et al.  An observer for infinite-dimensional dissipative bilinear systems , 1995 .

[29]  Vincent Andrieu,et al.  On the Existence of a Kazantzis--Kravaris/Luenberger Observer , 2006, SIAM J. Control. Optim..

[30]  L. Praly,et al.  Remarks on the existence of a Kazantzis-Kravaris/Luenberger observer , 2004, CDC.