A Study of Tate Homology via the Approximation Theory with Applications to the Depth Formula
暂无分享,去创建一个
[1] Olgur Celikbas,et al. Maximal Cohen–Macaulay tensor products , 2017, Annali di Matematica Pura ed Applicata (1923 -).
[2] Olgur Celikbas,et al. Vanishing of relative homology and depth of tensor products , 2016, 1608.07011.
[3] A. Sadeghi. LINKAGE OF FINITE GC -DIMENSION MODULES , 2016 .
[4] Benjamin Engel,et al. Divisor Theory In Module Categories , 2016 .
[5] A. Sadeghi. Linkage of finite G_C-dimension modules , 2015, 1507.00036.
[6] A. Sadeghi,et al. Linkage of modules and the Serre conditions , 2014, 1407.6544.
[7] Jianlong Chen,et al. Relative and Tate homology with respect to semidualizing modules , 2014 .
[8] S. Yassemi,et al. Relative Tor Functors with Respect to a Semidualizing Module , 2012, Algebras and Representation Theory.
[9] David A. Jorgensen,et al. Vanishing of Tate homology and depth formulas over local rings , 2011, 1107.3102.
[10] L. Şega. Self-tests for freeness over commutative artinian rings , 2011 .
[11] P. A. Bergh,et al. Homological algebra modulo exact zero-divisors , 2010, 1012.3010.
[12] S. Yassemi,et al. Depth Formula via Complete Intersection Flat Dimension , 2010, 1008.1637.
[13] Overtoun M. G. Jenda,et al. Relative homological algebra , 1956 .
[14] David A. Jorgensen. On tensor products of rings and extension conjectures , 2009 .
[15] S. Sather-Wagstaff,et al. Tate cohomology with respect to semidualizing modules , 2009, 0907.4969.
[16] S. Sather-Wagstaff,et al. AB-Contexts and Stability for Gorenstein Flat Modules with Respect to Semidualizing Modules , 2008, 0803.0998.
[17] S. Sather-Wagstaff,et al. Comparison of relative cohomology theories with respect to semidualizing modules , 2007, 0706.3635.
[18] A. Iacob. Absolute, Gorenstein, and Tate Torsion Modules , 2007 .
[19] Ryo Takahashi,et al. Homological aspects of semidualizing modules , 2007, math/0703643.
[20] C. Huneke,et al. Correction to “Tensor products of modules and the rigidity of Tor”, Math. Annalen, 299 (1994), 449–476 , 2007 .
[21] D. White. Gorenstein projective dimension with respect to a semidualizing module , 2006, math/0611711.
[22] Y. Yoshino,et al. Homological invariants associated to semi-dualizing bimodules , 2005, math/0505466.
[23] H. Schoutens. A GENERALIZATION OF THE AUSLANDER-BUCHSBAUM FORMULA , 2005 .
[24] Peter Jørgensen,et al. Semi-dualizing modules and related Gorenstein homological dimensions , 2004, math/0405526.
[25] H. Holm,et al. Gorenstein derived functors , 2004 .
[26] S. Yassemi,et al. Cohen-Macaulayness of Tensor Products , 2002, math/0209318.
[27] Alex Martsinkovsky,et al. Absolute, Relative, and Tate Cohomology of Modules of Finite Gorenstein Dimension , 2002 .
[28] A. Gerko. On homological dimensions , 2001 .
[29] S. Iyengar,et al. ON A DEPTH FORMULA FOR MODULES OVER LOCAL RINGS , 2001 .
[30] Ragnar-Olaf Buchweitz,et al. Support varieties and cohomology over complete intersections , 2000 .
[31] S. Iyengar. Depth for complexes, and intersection theorems , 1999 .
[32] David A. Jorgensen. Complexity and Tor on a Complete Intersection , 1999 .
[33] Y. Yoshino,et al. Remarks on a depth formula, a grade inequality and a conjecture of Auslander , 1998 .
[34] KEN-ICHI Yoshida. Tensor products of perfect modules and maximal surjective Buchsbaum modules , 1998 .
[35] T. Kawasaki. Surjective-buchsbaum modules over cohen-macaulay local rings , 1995 .
[36] C. Huneke,et al. Tensor products of modules and the rigidity of Tor , 1994 .
[37] Edgar E. Enochs,et al. On Cohen-Macaulay rings , 1994 .
[38] R. Buchweitz,et al. The Homological Theory of Maximal Cohen-Macaulay Approximations , 1989 .
[39] H. Foxby. Homological dimensions of complexes of modules , 1980 .
[40] Marie Paule Malliavin,et al. Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin , 1980 .
[41] H. Foxby. Quasi‐perfect modules over COHEN‐MACAULAY Rings , 1975 .
[42] H. Foxby. Gorenstein Modules and Related Modules. , 1972 .
[43] C. U. Jensen. On the vanishing of lim←(i) , 1970 .
[44] M. Bridger,et al. Stable Module Theory , 1969 .
[45] F. Ischebeck. Eine dualität zwischen den Funktoren Ext und Tor , 1969 .
[46] M. Auslander. Modules over unramified regular local rings , 1961 .