A Study of Tate Homology via the Approximation Theory with Applications to the Depth Formula

[1]  Olgur Celikbas,et al.  Maximal Cohen–Macaulay tensor products , 2017, Annali di Matematica Pura ed Applicata (1923 -).

[2]  Olgur Celikbas,et al.  Vanishing of relative homology and depth of tensor products , 2016, 1608.07011.

[3]  A. Sadeghi LINKAGE OF FINITE GC -DIMENSION MODULES , 2016 .

[4]  Benjamin Engel,et al.  Divisor Theory In Module Categories , 2016 .

[5]  A. Sadeghi Linkage of finite G_C-dimension modules , 2015, 1507.00036.

[6]  A. Sadeghi,et al.  Linkage of modules and the Serre conditions , 2014, 1407.6544.

[7]  Jianlong Chen,et al.  Relative and Tate homology with respect to semidualizing modules , 2014 .

[8]  S. Yassemi,et al.  Relative Tor Functors with Respect to a Semidualizing Module , 2012, Algebras and Representation Theory.

[9]  David A. Jorgensen,et al.  Vanishing of Tate homology and depth formulas over local rings , 2011, 1107.3102.

[10]  L. Şega Self-tests for freeness over commutative artinian rings , 2011 .

[11]  P. A. Bergh,et al.  Homological algebra modulo exact zero-divisors , 2010, 1012.3010.

[12]  S. Yassemi,et al.  Depth Formula via Complete Intersection Flat Dimension , 2010, 1008.1637.

[13]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[14]  David A. Jorgensen On tensor products of rings and extension conjectures , 2009 .

[15]  S. Sather-Wagstaff,et al.  Tate cohomology with respect to semidualizing modules , 2009, 0907.4969.

[16]  S. Sather-Wagstaff,et al.  AB-Contexts and Stability for Gorenstein Flat Modules with Respect to Semidualizing Modules , 2008, 0803.0998.

[17]  S. Sather-Wagstaff,et al.  Comparison of relative cohomology theories with respect to semidualizing modules , 2007, 0706.3635.

[18]  A. Iacob Absolute, Gorenstein, and Tate Torsion Modules , 2007 .

[19]  Ryo Takahashi,et al.  Homological aspects of semidualizing modules , 2007, math/0703643.

[20]  C. Huneke,et al.  Correction to “Tensor products of modules and the rigidity of Tor”, Math. Annalen, 299 (1994), 449–476 , 2007 .

[21]  D. White Gorenstein projective dimension with respect to a semidualizing module , 2006, math/0611711.

[22]  Y. Yoshino,et al.  Homological invariants associated to semi-dualizing bimodules , 2005, math/0505466.

[23]  H. Schoutens A GENERALIZATION OF THE AUSLANDER-BUCHSBAUM FORMULA , 2005 .

[24]  Peter Jørgensen,et al.  Semi-dualizing modules and related Gorenstein homological dimensions , 2004, math/0405526.

[25]  H. Holm,et al.  Gorenstein derived functors , 2004 .

[26]  S. Yassemi,et al.  Cohen-Macaulayness of Tensor Products , 2002, math/0209318.

[27]  Alex Martsinkovsky,et al.  Absolute, Relative, and Tate Cohomology of Modules of Finite Gorenstein Dimension , 2002 .

[28]  A. Gerko On homological dimensions , 2001 .

[29]  S. Iyengar,et al.  ON A DEPTH FORMULA FOR MODULES OVER LOCAL RINGS , 2001 .

[30]  Ragnar-Olaf Buchweitz,et al.  Support varieties and cohomology over complete intersections , 2000 .

[31]  S. Iyengar Depth for complexes, and intersection theorems , 1999 .

[32]  David A. Jorgensen Complexity and Tor on a Complete Intersection , 1999 .

[33]  Y. Yoshino,et al.  Remarks on a depth formula, a grade inequality and a conjecture of Auslander , 1998 .

[34]  KEN-ICHI Yoshida Tensor products of perfect modules and maximal surjective Buchsbaum modules , 1998 .

[35]  T. Kawasaki Surjective-buchsbaum modules over cohen-macaulay local rings , 1995 .

[36]  C. Huneke,et al.  Tensor products of modules and the rigidity of Tor , 1994 .

[37]  Edgar E. Enochs,et al.  On Cohen-Macaulay rings , 1994 .

[38]  R. Buchweitz,et al.  The Homological Theory of Maximal Cohen-Macaulay Approximations , 1989 .

[39]  H. Foxby Homological dimensions of complexes of modules , 1980 .

[40]  Marie Paule Malliavin,et al.  Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin , 1980 .

[41]  H. Foxby Quasi‐perfect modules over COHEN‐MACAULAY Rings , 1975 .

[42]  H. Foxby Gorenstein Modules and Related Modules. , 1972 .

[43]  C. U. Jensen On the vanishing of lim←(i) , 1970 .

[44]  M. Bridger,et al.  Stable Module Theory , 1969 .

[45]  F. Ischebeck Eine dualität zwischen den Funktoren Ext und Tor , 1969 .

[46]  M. Auslander Modules over unramified regular local rings , 1961 .