Structure-from-motion based hand-eye calibration using L∞ minimization

This paper presents a novel method for so-called hand-eye calibration. Using a calibration target is not possible for many applications of hand-eye calibration. In such situations Structure-from-Motion approach of hand-eye calibration is commonly used to recover the camera poses up to scaling. The presented method takes advantage of recent results in the L∞-norm optimization using Second-Order Cone Programming (SOCP) to recover the correct scale. Further, the correctly scaled displacement of the hand-eye transformation is recovered solely from the image correspondences and robot measurements, and is guaranteed to be globally optimal with respect to the L∞-norm. The method is experimentally validated using both synthetic and real world datasets.

[1]  Heinrich Niemann,et al.  Calibration-Free Hand-Eye Calibration: A Structure-from-Motion Approach , 2005, DAGM-Symposium.

[2]  Roger Y. Tsai,et al.  A new technique for fully autonomous and efficient 3D robotics hand/eye calibration , 1988, IEEE Trans. Robotics Autom..

[3]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[4]  Kostas Daniilidis,et al.  Hand-Eye Calibration Using Dual Quaternions , 1999, Int. J. Robotics Res..

[5]  Takeo Kanade,et al.  Quasiconvex Optimization for Robust Geometric Reconstruction , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Roger Y. Tsai,et al.  Real time versatile robotics hand/eye calibration using 3D machine vision , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[7]  Sang Wook Lee,et al.  A branch-and-bound algorithm for globally optimal calibration of a camera-and-rotation-sensor system , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[8]  Jack C. K. Chou,et al.  Finding the Position and Orientation of a Sensor on a Robot Manipulator Using Quaternions , 1991, Int. J. Robotics Res..

[9]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[10]  Yiu Cheung Shiu,et al.  Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB , 1989, IEEE Trans. Robotics Autom..

[11]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[12]  Frank Chongwoo Park,et al.  Robot sensor calibration: solving AX=XB on the Euclidean group , 1994, IEEE Trans. Robotics Autom..

[13]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[14]  Ching-Cheng Wang,et al.  Extrinsic calibration of a vision sensor mounted on a robot , 1992, IEEE Trans. Robotics Autom..

[15]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[16]  Hanqi Zhuang Hand/eye calibration for electronic assembly robots , 1997 .

[17]  Richard I. Hartley,et al.  Global Optimization through Rotation Space Search , 2009, International Journal of Computer Vision.

[18]  Richard I. Hartley,et al.  Multiple-View Geometry Under the {$L_\infty$}-Norm , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Hanqi Zhuang,et al.  Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX=YB , 1994, IEEE Trans. Robotics Autom..

[20]  Radu Horaud,et al.  Robot Hand-Eye Calibration Using Structure-from-Motion , 2001, Int. J. Robotics Res..

[21]  Fadi Dornaika,et al.  Hand-Eye Calibration , 1995, Int. J. Robotics Res..

[22]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[23]  Hanqi Zhang,et al.  Hand/eye calibration for electronic assembly robots , 1998, IEEE Trans. Robotics Autom..