Chaotic dynamics and supercontinuum generation with cosh-Gaussian pulses in photonic-crystal fibers

In this paper, we investigate broadband supercontinuum generation in photonic crystal fibers using cosh-Gaussian optical pulses, which provide flatter spectrum than standard Gaussian pulses. This fact can be crucial for telecommunication systems applications. The intensive numerical study of three main telecommunication windows pointed out the most prominent window for spectral broadening. This finding offers the possibility of improving the characteristics of multi-wavelength sources and to enable wavelength density multiplexing systems.

[1]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[2]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[3]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[4]  Shuangchen Ruan,et al.  Double Cladding Seven-Core Photonic Crystal Fibers With Different GVD Properties and Fundamental Supermode Output , 2013, Journal of Lightwave Technology.

[5]  S. Jana,et al.  Linear and nonlinear propagation of sinh-Gaussian pulses in dispersive media possessing Kerr nonlinearity , 2004 .

[6]  Numerical analysis of supercontinuum generation in photonic-crystal fibers with zero dispersion wavelengths in telecommunication windows , 2016 .

[7]  A. Husakou,et al.  Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. , 2001, Physical review letters.

[8]  R. Leonhardt,et al.  White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. , 2001, Optics letters.

[9]  K. P. Huy,et al.  Supercontinuum generation by nanosecond dual-pumping near the two zero-dispersion wavelengths of a photonic crystal fiber , 2011 .

[10]  B. Eggleton,et al.  Harnessing and control of optical rogue waves in supercontinuum generation. , 2008, Optics express.

[11]  H. W. Astle,et al.  Low-loss single-material fibers made from pure fused silica , 1974 .

[12]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[13]  H. Ludvigsen,et al.  Picosecond supercontinuum light source for stroboscopic white-light interferometry with freely adjustable pulse repetition rate. , 2014, Optics express.

[14]  P. Russell Photonic Crystal Fibers , 2003, Science.

[15]  Broadband supercontinuum generation in photonic crystal fibers using cosh-Gaussian pulses at 835 nm wavelength , 2016 .

[16]  Qiang Lin,et al.  Soliton fission and supercontinuum generation in silicon waveguides. , 2007, Optics letters.

[17]  N. Nishizawa Generation and application of high-quality supercontinuum sources , 2012 .

[18]  Peiguang Yan,et al.  A compact seven-core photonic crystal fiber supercontinuum source with 42.3 W output power , 2013 .

[19]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[20]  Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm. , 2013, Optics express.

[21]  F. Dias,et al.  Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. , 2009, Optics express.