DNA-templated three-branched nanostructures for nanoelectronic devices.

Three-branched DNA molecules have been designed and assembled from oligonucleotide components. These nucleic acid constructs contain double- and single-stranded regions that control the hybridization behavior of the assembly. Specific localization of a single streptavidin molecule at the center of the DNA complex has been investigated as a model system for the directed placement of nanostructures. Highly selective silver and copper metallization of the DNA template has also been characterized. Specific hybridization of these DNA complexes to oligonucleotide-coupled nanostructures followed by metallization should provide a bottom-up self-assembly route for the fabrication and characterization of discrete three-terminal nanodevices.