Stochastic nonlocal conservation laws on whole space

Abstract After introducing an entropy formulation for stochastic nonlocal conservation laws via an integral formula, we develop a uniqueness theory by using a doubling variables technique and an existence theory by using a vanishing viscosity method. We further consider the continuous dependence of the entropy solution on initial data.

[1]  Enrico Valdinoci,et al.  A Brezis-Nirenberg result for non-local critical equations in low dimension , 2013 .

[2]  D. Nualart,et al.  Stochastic scalar conservation laws , 2008 .

[3]  Nathael Alibaud Entropy formulation for fractal conservation laws , 2007 .

[4]  W. Woyczynski,et al.  Fractal Burgers Equations , 1998 .

[5]  Jérôme Droniou,et al.  Vanishing non-local regularization of a scalar conservation law , 2003 .

[6]  Simone Cifani,et al.  Optimal Continuous Dependence Estimates for Fractional Degenerate Parabolic Equations , 2013, 1307.1218.

[7]  J. Droniou,et al.  Fractal First-Order Partial Differential Equations , 2006 .

[8]  Ananta K. Majee,et al.  Stochastic conservation laws: Weak-in-time formulation and strong entropy condition☆ , 2013, 1305.7087.

[9]  Jinqiao Duan An Introduction to Stochastic Dynamics , 2015 .

[10]  A. Debussche,et al.  Scalar conservation laws with stochastic forcing , 2010, 1001.5415.

[11]  Jinqiao Duan,et al.  Impacts of Noise on a Class of Partial Differential Equations , 2014 .

[12]  Enrico Valdinoci,et al.  From the long jump random walk to the fractional Laplacian , 2009, 0901.3261.

[13]  Zdzisław Brzeźniak,et al.  On Stochastic Burgers Equation Driven by a Fractional Laplacian and Space-Time White Noise , 2007 .

[14]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[15]  Zdzislaw Brze'zniak,et al.  Ergodic properties of Fractional Stochastic Burgers Equation , 2011, 1106.1918.

[16]  Salah-Eldin A. Mohammed,et al.  Stochastic Burgers Equation with Random Initial Velocities: A Malliavin Calculus Approach , 2013, SIAM J. Math. Anal..

[17]  Daniel M. Tartakovsky,et al.  Perspective on theories of non-Fickian transport in heterogeneous media , 2009 .

[18]  Hongjun Gao,et al.  On a stochastic nonlocal conservation law in a bounded domain , 2016 .

[19]  Wei Wang,et al.  Effective Dynamics of Stochastic Partial Differential Equations , 2014 .

[20]  Simone Cifani,et al.  Continuous Dependence Estimates for Nonlinear Fractional Convection-diffusion Equations , 2011, SIAM J. Math. Anal..

[21]  J. Blackledge Application of the Fractional Diffusion Equation for Predicting Market Behaviour , 2010 .

[22]  Imran H. Biswas Regularization by 12-Laplacian and vanishing viscosity approximation of HJB equations , 2012, 1205.6943.

[23]  Krzysztof Bogdan,et al.  Estimates of the Green Function for the Fractional Laplacian Perturbed by Gradient , 2010, 1009.2472.

[24]  B. Perthame,et al.  Kruzkov's estimates for scalar conservation laws revisited , 1998 .

[25]  Wojbor A. Woyczyński,et al.  Global and Exploding Solutions for Nonlocal Quadratic Evolution Problems , 1998, SIAM J. Appl. Math..

[26]  Jinqiao Duan,et al.  Martingale and Weak Solutions for a Stochastic Nonlocal Burgers Equation on Bounded Intervals , 2014, 1410.7691.

[27]  Xicheng Zhang,et al.  Densities for SDEs driven by degenerate $\alpha$-stable processes , 2012 .

[28]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[29]  F. Flandoli,et al.  Well-posedness of the transport equation by stochastic perturbation , 2008, 0809.1310.

[30]  Luis Silvestre,et al.  Eventual regularization for the slightly supercritical quasi-geostrophic equation , 2008, 0812.4901.

[31]  Enrico Valdinoci,et al.  Variational methods for non-local operators of elliptic type , 2012 .

[32]  Alessio Figalli,et al.  Regularity of solutions to the parabolic fractional obstacle problem , 2011, 1101.5170.

[33]  Gui-Qiang G. Chen,et al.  On Nonlinear Stochastic Balance Laws , 2011, 1111.5217.

[34]  Jiang-Lun Wu,et al.  On a Burgers type nonlinear equation perturbed by a pure jump Lévy noise in Rd , 2012 .

[35]  N. Cancrini,et al.  The stochastic Burgers Equation , 1994 .

[36]  Wojbor A. Woyczyński,et al.  Multifractal and Lévy conservation laws , 2000 .

[37]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .