Controlling Selective Doping and Energy Transfer between Transition Metal and Rare Earth Ions in Nanostructured Glassy Solids

[1]  H. Y. Playford,et al.  Characterization of Structural Disorder in γ-Ga2O3 , 2014 .

[2]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[3]  J. Qiu,et al.  Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications. , 2015, Chemical Society reviews.

[4]  Bin Qian,et al.  A volumetric full-color display realized by frequency upconversion of a transparent composite incorporating dispersed nonlinear optical crystals , 2017 .

[5]  Michael C. Ostrowski,et al.  Inhibition of Jak/STAT signaling reduces the activation of pancreatic stellate cells in vitro and limits caerulein-induced chronic pancreatitis in vivo , 2017, Scientific Reports.

[6]  Xiaoyan Li,et al.  Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+:ZnAl2O4 and Pr3+:YF3 nano-crystals , 2016 .

[7]  J. Qiu,et al.  Do Eu dopants prefer the precipitated LaF3 nanocrystals in glass ceramics? , 2012 .

[8]  E. Cocker,et al.  Fiber-optic fluorescence imaging , 2005, Nature Methods.

[9]  Changgui Lin,et al.  Nanocrystallization in Oxyfluoride Glasses Controlled by Amorphous Phase Separation. , 2015, Nano letters.

[10]  Y. Bando,et al.  A Rhombic Dodecahedral Honeycomb Structure with Cation Vacancy Ordering in a γ-Ga2O3 Crystal , 2013 .

[11]  Wei Xu,et al.  Yb3+/Ln3+/Cr3+ (Ln = Er, Ho) doped transparent glass ceramics: crystallization, Ln3+ sensitized Cr3+ upconversion emission and multi-modal temperature sensing , 2017 .

[12]  Chun-Hua Yan,et al.  Energy transfer in lanthanide upconversion studies for extended optical applications. , 2015, Chemical Society reviews.

[13]  T. Epicier,et al.  Conjugation of TEM-EDX and optical spectroscopy tools for the localization of Yb3+, Er3+ and Co2+ dopants in laser glass ceramics composed of MgAl2O4 spinel nano-crystals embedded in SiO2 glass , 2014 .

[14]  Zhijun Ma,et al.  Ni(2+) doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment. , 2015, Optics Express.

[15]  Zhiyuan Hu,et al.  Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm , 2017, Nature Communications.

[16]  C. Rüssel,et al.  Cubic and Hexagonal NaGdF4 Crystals Precipitated from an Aluminosilicate Glass: Preparation and Luminescence Properties , 2013 .

[17]  J. Qiu,et al.  Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics. , 2008, Optics express.

[18]  V. Sigaev,et al.  Augmented excitation cross section of gadolinium ions in nanostructured glasses. , 2017, Optics Letters.

[19]  J. Shin,et al.  Controlling Er–Tm interaction in Er and Tm codoped silicon-rich silicon oxide using nanometer-scale spatial separation for efficient, broadband infrared luminescence , 2004 .

[20]  W. Bauhofer,et al.  Highly luminescent Eu3+ or Tb3+ doped and ZnO sensitized optical fibers drawn from silicon compatible sealing glasses , 1996 .

[21]  Hai Zhu,et al.  Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. , 2013, Angewandte Chemie.

[22]  Zhongmin Yang,et al.  Mesoscale engineering of photonic glass for tunable luminescence , 2016 .

[23]  G. Blasse The physics of new luminescent materials , 1987 .

[24]  Z. Ji,et al.  Dual-Phase Glass Ceramic: Structure, Dual-Modal Luminescence, and Temperature Sensing Behaviors. , 2015, ACS applied materials & interfaces.

[25]  Feng Liu,et al.  Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor. , 2014, Physical review letters.

[26]  Horst Weller,et al.  Electrical control of Förster energy transfer , 2006, Nature materials.

[27]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[28]  J. DiMaio,et al.  Controlling energy transfer between multiple dopants within a single nanoparticle , 2008, Proceedings of the National Academy of Sciences.

[29]  H. Dai,et al.  Direct Evidence for Coupled Surface and Concentration Quenching Dynamics in Lanthanide-Doped Nanocrystals. , 2017, Journal of the American Chemical Society.

[30]  Daqin Chen,et al.  Integrated broadband near-infrared luminescence in transparent glass ceramics containing γ-Ga2O3: Ni2+ and β-YF3: Er3+ nanocrystals , 2013 .

[31]  Kunlun Yan,et al.  Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+ , 2015 .

[32]  W. Lu,et al.  Phonon‐Assisted Population Inversion in Lanthanide‐Doped Upconversion Ba2LaF7 Nanocrystals in Glass‐Ceramics , 2016, Advanced materials.

[33]  Jianhua Hao,et al.  Ligand‐Driven Wavelength‐Tunable and Ultra‐Broadband Infrared Luminescence in Single‐Ion‐Doped Transparent Hybrid Materials , 2009 .

[34]  B. Cohen,et al.  Rationally Designed Energy Transfer in Upconverting Nanoparticles , 2015, Advanced materials.

[35]  J. Qiu,et al.  Enhanced broadband near-infrared luminescence in transparent silicate glass ceramics containing Yb3+ ions and Ni2+-doped LiGa5O8 nanocrystals , 2008 .

[36]  M. Allix,et al.  Long-lasting luminescent ZnGa 2 O 4 :Cr 3+ transparent glass-ceramics† , 2014 .

[37]  Anping Yang,et al.  Tuning of multicolor emissions in glass ceramics containing γ-Ga2O3 and β-YF3 nanocrystals , 2013 .

[38]  L. Wondraczek,et al.  Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) åkermanite–feldspar bi-phasic glass ceramics , 2013 .

[39]  Jun Yang,et al.  The distribution of rare earth ions in a γ-Ga2O3 nanocrystal-silicate glass composite and its influence on the photoluminescence properties , 2018 .

[40]  Byeongdu Lee,et al.  Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies. , 2016, Nano letters.

[41]  T. Heil,et al.  Experimental evidence of self-limited growth of nanocrystals in glass. , 2009, Nano letters.

[42]  J. Qiu,et al.  Multiscale structured glass for advanced light management , 2017 .

[43]  R. Reisfeld,et al.  Energy transfer between samarium and europium in phosphate glasses , 1972 .

[44]  K. Miura,et al.  Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence. , 2010, Journal of the American Chemical Society.

[45]  M. Inokuti,et al.  Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence , 1965 .

[46]  L. Wondraczek,et al.  Photoluminescence and energy transfer in Tb3+/Mn2+ co-doped ZnAl2O4 glass ceramics , 2011 .