Sequence-selective DNA recognition: natural products and nature's lessons.

Biologically active, therapeutically useful, DNA binding natural products continue to reveal new paradigms for sequence-selective recognition, to enlist beautiful mechanisms of in situ activation for DNA modification, to define new therapeutic targets, to exploit new mechanisms to achieve cellular selectivity, and to provide a rich source of new drugs. These attributes arise in compact structures of complex integrated function.

[1]  K. Gates Covalent Modification of DNA by Natural Products , 2001 .

[2]  S. Rockwell,et al.  Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells. , 1980, Cancer research.

[3]  A. Rich,et al.  Interactions between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CpGpTpApCpG) at 1.2-A resolution. , 1987, Biochemistry.

[4]  D. Vanderwall,et al.  Solution Structure of Co·Bleomycin A2 Green Complexed with d(CCAGGCCTGG) , 1996 .

[5]  R. Hertzberg,et al.  Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. , 1985, The Journal of biological chemistry.

[6]  D. Boger,et al.  DNA binding properties of key sandramycin analogues: systematic examination of the intercalation chromophore. , 1999, Bioorganic & medicinal chemistry.

[7]  M. Warpehoski,et al.  Sequence selectivity of DNA covalent modification. , 1988, Chemical research in toxicology.

[8]  W. Denny DNA-intercalating ligands as anti-cancer drugs: prospects for future design. , 1989, Anti-cancer drug design.

[9]  R. J. Franco,et al.  Inhibitors of DNA topoisomerases. , 1988, Biochemistry.

[10]  E. Reich,et al.  Actinomycin and nucleic acid function. , 1964, Progress in nucleic acid research and molecular biology.

[11]  D. Boger,et al.  d,l- and meso-Isochrysohermidin: Total Synthesis and Interstrand DNA Cross-Linking. , 1994 .

[12]  M. Waring,et al.  Nucleotide sequence binding preferences of nogalamycin investigated by DNase I footprinting. , 1986, Biochemistry.

[13]  S. Sakiyama,et al.  Binding of saframycin A, a heterocyclic quinone anti-tumor antibiotic to DNA as revealed by the use of the antibiotic labeled with [14C]tyrosine or [14C]cyanide. , 1981, The Journal of biological chemistry.

[14]  A. McPhail,et al.  Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata1,2 , 1966 .

[15]  F. Zunino,et al.  Current status and perspectives in the development of camptothecins. , 2002, Current pharmaceutical design.

[16]  K W Kohn,et al.  Intercalative binding of ellipticine to DNA. , 1975, Cancer research.

[17]  R. Mason,et al.  Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. , 1980, Biochimica et biophysica acta.

[18]  W. Remers The chemistry of antitumor antibiotics , 1979 .

[19]  L. Liu,et al.  Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. , 1984, The Journal of biological chemistry.

[20]  K. Nicolaou,et al.  The enediyne antibiotics. , 1996, Journal of medicinal chemistry.

[21]  David J Newman,et al.  Natural products as sources of new drugs over the period 1981-2002. , 2003, Journal of natural products.

[22]  S. Sigurdsson,et al.  DNA interstrand cross-linking by reductively activated FR900482 and FR366979 , 1993 .

[23]  K. Kohn,et al.  Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: evidence for a specific receptor site and a relation to antitumor activity. , 1989, Cancer research.

[24]  J. Kirk The mode of action of actinomycin D. , 1960, Biochimica et biophysica acta.

[25]  P. Dervan Design of sequence-specific DNA-binding molecules. , 1986, Science.

[26]  J. Lown,,et al.  Molecular mechanisms of binding and single-strand scission of DNA by the antitumor antibiotics saframycins A and C , 1982 .

[27]  L. Liu,et al.  Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4'-(9-acridinylamino)-methanesulfon-m-anisidide. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Greenberg 7.11 – Chemistry of DNA Damage , 1999 .

[29]  E. De Clercq,et al.  Novel linked antiviral and antitumor agents related to netropsin and distamycin: synthesis and biological evaluation. , 1989, Journal of medicinal chemistry.

[30]  A. Lorico,et al.  Biochemical characterisation of elsamicin and other coumarin-related antitumour agents as potent inhibitors of human topoisomerase II. , 1993, European journal of cancer.

[31]  B. Roques,et al.  DNA intercalating compounds as potential antitumor agents. 1. Preparation and properties of 7H-pyridocarbazoles. , 1980, Journal of medicinal chemistry.

[32]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[33]  D. Boger,et al.  DNA alkylation properties of yatakemycin. , 2003, Journal of the American Chemical Society.

[34]  L. Liu,et al.  Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. , 1984, Science.

[35]  F. Crick,et al.  The theory of mutagenesis , 1961 .

[36]  M. Waring,et al.  DNA sequence preferences for the anti‐cancer drug mitoxanthrone and related anthraquinones revealed by DNase I footprinting , 1986, FEBS letters.

[37]  J. Stubbe,et al.  Neocarzinostatin-induced hydrogen atom abstraction from C-4' and C-5' of the T residue at a d(GT) step in oligonucleotides: shuttling between deoxyribose attack sites based on isotope selection effects. , 1991, Biochemistry.

[38]  M. Waring,et al.  Echinomycin: a bifunctional intercalating antibiotic , 1974, Nature.

[39]  W. Szybalski,et al.  Mitomycins and Porfiromycin: Chemical Mechanism of Activation and Cross-linking of DNA , 1964, Science.

[40]  B. Kwon,et al.  DNA Cleavage by Neocarzinostatin Chromophore. Establishing the Intermediacy of Chromophore-Derived Cumulene and Biradical Species and Their Role in Sequence-Specific Cleavage , 1994 .

[41]  M. Tomasz,et al.  Alkylation and Crosslinking of DNA by the Unnatural Enantiomer of Mitomycin C: Mechanism of the DNA-Sequence Specificity of Mitomycins , 1995 .

[42]  Thomas A Steitz,et al.  Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. , 2003, Journal of molecular biology.

[43]  中西 香爾,et al.  Comprehensive natural products chemistry , 1999 .

[44]  L. Liu,et al.  Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. , 1984, Cancer research.

[45]  Q. He,et al.  Binding of 2,7-diaminomitosene to DNA: model for the precovalent recognition of DNA by activated mitomycin C. , 1995, Biochemistry.

[46]  D. Vanderwall,et al.  BLEOMYCINS : A STRUCTURAL MODEL FOR SPECIFICITY, BINDING, AND DOUBLE STRAND CLEAVAGE , 1996 .

[47]  S. Brenner,et al.  Mutagenesis of bacteriophage T4 by acridines. , 1961, Journal of molecular biology.

[48]  D. Boger,et al.  Total synthesis, structure revision, and absolute configuration of (+)-yatakemycin. , 2004, Journal of the American Chemical Society.

[49]  D. Boger,et al.  Synthesis of key sandramycin analogs: systematic examination of the intercalation chromophore. , 1998, Bioorganic & medicinal chemistry.

[50]  D. Boger,et al.  Mechanisms of in situ activation for DNA-targeting antitumor agents. , 2002, Chemical reviews.

[51]  C. Bailly,et al.  Sequence-specific DNA minor groove binders. Design and synthesis of netropsin and distamycin analogues. , 1998, Bioconjugate chemistry.

[52]  A. Rich,et al.  Non-Watson-Crick G.C and A.T base pairs in a DNA-antibiotic complex. , 1986, Science.

[53]  D. Boger,et al.  Total synthesis and comparative evaluation of luzopeptin A-C and quinoxapeptin A-C , 1999 .

[54]  R. Hertzberg,et al.  DNA sequence specificity of the pyrrolo[1,4]benzodiazepine antitumor antibiotics. Methidiumpropyl-EDTA-iron(II) footprinting analysis of DNA binding sites for anthramycin and related drugs. , 1986, Biochemistry.

[55]  S. Hecht Bleomycin: new perspectives on the mechanism of action. , 2000, Journal of natural products.

[56]  Robert G. Bergman,et al.  Reactive 1,4-dehydroaromatics , 1973 .

[57]  Peter W Swaan,et al.  Camptothecins , 2012, Drugs.

[58]  D. Boger,et al.  Reversed and Sandwiched Analogs of Duocarmycin SA: Establishment of the Origin of the Sequence-Selective Alkylation of DNA and New Insights into the Source of Catalysis , 1997 .

[59]  K. Kohn,et al.  DNA sequence- and structure-selective alkylation of guanine N2 in the DNA minor groove by ecteinascidin 743, a potent antitumor compound from the Caribbean tunicate Ecteinascidia turbinata. , 1996, Biochemistry.

[60]  S. Rajski,et al.  DNA Cross-Linking Agents as Antitumor Drugs. , 1998, Chemical reviews.

[61]  M. Tomasz,et al.  Mitomycin C: small, fast and deadly (but very selective). , 1995, Chemistry & biology.

[62]  D. Boger,et al.  Total syntheses of thiocoraline and BE-22179 and assessment of their DNA binding and biological properties. , 2001, Journal of the American Chemical Society.

[63]  L. Liu,et al.  Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. , 1988, Cancer research.

[64]  D J Newman,et al.  Natural products in drug discovery and development. , 1997, Journal of natural products.

[65]  R. Coulombe,et al.  DNA cross-linking in mammalian cells by pyrrolizidine alkaloids: structure-activity relationships. , 1991, Toxicology and applied pharmacology.

[66]  A. Rich,et al.  The molecular structure of a DNA-triostin A complex. , 1984, Science.

[67]  B. Roques,et al.  DNA INTERCALATING COMPOUNDS AS POTENTIAL ANTITUMOR AGENTS. PART 2. PREPARATION AND PROPERTIES OF 7H-PYRIDOCARBAZOLE DIMERS , 1981 .

[68]  L. Breydo,et al.  Thiol-independent DNA alkylation by leinamycin. , 2001, Journal of the American Chemical Society.

[69]  T. Shimada,et al.  Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. Chaires,et al.  Allosteric, chiral-selective drug binding to DNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Lee,et al.  Calicheamicins: Discovery, Structure, Chemistry, and Interaction with DNA , 1991 .

[72]  W. Foye Cancer chemotherapeutic agents , 1995 .

[73]  J. Lown,,et al.  Recent developments in sequence selective minor groove DNA effectors. , 2000, Current medicinal chemistry.

[74]  Y. Nieto,et al.  DNA-binding agents. , 2002, Cancer chemotherapy and biological response modifiers.

[75]  J G Pelton,et al.  Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Y. Usami,et al.  Enantiospecific recognition of DNA by bleomycin , 1993 .

[77]  P. Dervan,et al.  Molecular recognition of DNA by small molecules. , 2001, Bioorganic & medicinal chemistry.

[78]  D. Goodsell,et al.  The molecular origin of DNA-drug specificity in netropsin and distamycin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[79]  D. Boger,et al.  Total Synthesis of (+)-Duocarmycin A, epi-(+)-Duocarmycin A and Their Unnatural Enantiomers: Assessment of Chemical and Biological Properties , 1997 .

[80]  S Neidle,et al.  DNA minor-groove recognition by small molecules. , 2001, Natural product reports.

[81]  M. Wani,et al.  Plant antitumor agents. 28. Resolution of a key tricyclic synthon, 5'(RS)-1,5-dioxo-5'-ethyl-5'-hydroxy-2'H,5'H,6'H-6'-oxopyrano[3' ,4'- f]delta 6,8-tetrahydro-indolizine: total synthesis and antitumor activity of 20(S)- and 20(R)-camptothecin. , 1987, Journal of medicinal chemistry.

[82]  D M Crothers,et al.  Studies of the binding of actinomycin and related compounds to DNA. , 1968, Journal of molecular biology.

[83]  D. Boger,et al.  Asymmetric total synthesis of ent-(-)-roseophilin: assignment of absolute configuration. , 2001, Journal of the American Chemical Society.

[84]  D. Boger,et al.  Bleomycin: Synthetic and Mechanistic Studies. , 1999, Angewandte Chemie.

[85]  L. Hurley,et al.  Structure of the altromycin B (N7-guanine)-DNA adduct. A proposed prototypic DNA adduct structure for the pluramycin antitumor antibiotics. , 1993, Biochemistry.

[86]  K. Gates Mechanisms of DNA damage by leinamycin. , 2000, Chemical research in toxicology.

[87]  C. Bailly Topoisomerase I poisons and suppressors as anticancer drugs. , 2000, Current medicinal chemistry.

[88]  C. Bailly,et al.  DNA cleavage by topoisomerase I in the presence of indolocarbazole derivatives of rebeccamycin. , 1997, Biochemistry.

[89]  A. Sartorelli Therapeutic attack of hypoxic cells of solid tumors: presidential address. , 1988, Cancer research.

[90]  L. Lerman,et al.  Structural considerations in the interaction of DNA and acridines. , 1961, Journal of molecular biology.

[91]  D. Boger,et al.  (-)-SANDRAMYCIN : TOTAL SYNTHESIS AND CHARACTERIZATION OF DNA BINDING PROPERTIES , 1996 .

[92]  R. Hertzberg,et al.  Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Aalt Bast,et al.  Comprehensive medicinal chemistry , 1991 .

[94]  J. Robert,et al.  Pharmacokinetics and metabolism of anthracyclines. , 1993, Cancer surveys.

[95]  M. Gordaliza,et al.  Antitumor properties of podophyllotoxin and related compounds. , 2000, Current pharmaceutical design.

[96]  D. Boger,et al.  (+)- and ent-(-)-Duocarmycin SA and (+)- and ent-(-)-N-BOC-DSA DNA Alkylation Properties.Alkylation Site Models That Accommodate the Offset AT-Rich Adenine N3 Alkylation Selectivity of the Enantiomeric Agents , 1994 .

[97]  D. Boger,et al.  CC-1065 AND THE DUOCARMYCINS : UNDERSTANDING THEIR BIOLOGICAL FUNCTION THROUGH MECHANISTIC STUDIES , 1996 .

[98]  W. Szybalski,et al.  A MOLECULAR MECHANISM OF MITOMYCIN ACTION: LINKING OF COMPLEMENTARY DNA STRANDS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[99]  D. Boger,et al.  Catalysis of the CC-1065 and duocarmycin DNA alkylation reaction: DNA binding induced conformational change in the agent results in activation. , 1997, Bioorganic & medicinal chemistry.

[100]  P. Schultz,et al.  DNA affinity cleaving : Sequence specific cleavage of DNA by Distamycin-EDTA - Fe(II) and EDTA-distamycin Fe(II) , 1984 .

[101]  D. Boger,et al.  d,l- and meso-Isochrysohermidin: total synthesis and interstrand DNA crosslinking , 1993 .

[102]  M. Salvati,et al.  Novel interstrand cross-links induced by the antitumor antibiotic carzinophilin/azinomycin B , 1992 .

[103]  R. Tjian,et al.  Transcription regulation and animal diversity , 2003, Nature.