On Near-cloaking for Linear Elasticity

We make precise some results on the cloaking of displacement fields in linear elasticity. In the spirit of transformation media theory, the transformed governing equations in Cosserat and Willis frameworks are shown to be equivalent to certain high contrast small defect problems for the usual Navier equations. We discuss near-cloaking for elasticity systems via a regularized transform and perform numerical experiments to illustrate our near-cloaking results. We also study the sharpness of the estimates from [H. Ammari, H. Kang, K. Kim and H. Lee, J. Diff. Eq. 254, 4446-4464 (2013)], wherein the convergence of the solutions to the transmission problems is investigated, when the Lame parameters in the inclusion tend to extreme values. Both soft and hard inclusion limits are studied and we also touch upon the finite frequency case. Finally, we propose an approximate isotropic cloak algorithm for a symmetrized Cosserat cloak.

[1]  S. Guenneau,et al.  Experiments on seismic metamaterials: molding surface waves. , 2014, Physical review letters.

[2]  R. Kohn,et al.  Cloaking via change of variables in electric impedance tomography , 2008 .

[3]  F. Cotton,et al.  Toward Seismic Metamaterials: The METAFORET Project , 2018 .

[4]  Sebastien Guenneau,et al.  Controlling solid elastic waves with spherical cloaks , 2014, 1403.1847.

[5]  P. Seppecher,et al.  Determination of the Closure of the Set of Elasticity Functionals , 2003 .

[6]  Robert V. Kohn,et al.  Cloaking via change of variables for the Helmholtz equation , 2010 .

[7]  Elastodynamic cloaking and field enhancement for soft spheres , 2014, 1410.7334.

[8]  S. Guenneau,et al.  Tessellated and stellated invisibility. , 2009, Optics express.

[9]  J. Dyszlewicz Micropolar theory of elasticity , 2004 .

[10]  G. Uhlmann,et al.  Isotropic transformation optics: approximate acoustic and quantum cloaking , 2008, 0806.0085.

[11]  S. Guenneau,et al.  Cloaking In-Plane Elastic Waves with Swiss Rolls , 2019, Materials.

[12]  D. Bigoni,et al.  Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Part II: Singularities, annihilation and invisibility , 2016, 1605.04942.

[13]  Sebastien Guenneau,et al.  Cloaking via change of variables in elastic impedance tomography , 2013, 1306.4647.

[14]  Graeme W Milton,et al.  On modifications of Newton's second law and linear continuum elastodynamics , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Josselin Garnier,et al.  Mathematical Methods in Elasticity Imaging , 2015 .

[16]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[17]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[18]  R. Craster,et al.  Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances , 2016, Scientific Reports.

[19]  Jong Chul Ye,et al.  Two-Dimensional Elastic Scattering Coefficients and Enhancement of Nearly Elastic Cloaking , 2016, 1606.08070.

[20]  W. Matusik,et al.  Physical Realization of Elastic Cloaking with a Polar Material. , 2020, Physical review letters.

[21]  Hoai-Minh Nguyen,et al.  Approximate Cloaking for the Full Wave Equation via Change of Variables , 2012, SIAM J. Math. Anal..

[22]  Andrew N. Norris,et al.  Elastic cloaking theory , 2011 .

[23]  Baowen Li,et al.  Seismic invisibility: elastic wave cloaking via symmetrized transformation media , 2017, New Journal of Physics.

[24]  J. Willis Variational principles for dynamic problems for inhomogeneous elastic media , 1981 .

[25]  Realizing the Willis equations with pre-stresses , 2014, 1411.0663.

[26]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[27]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[28]  Matti Lassas,et al.  Cloaking Devices, Electromagnetic Wormholes, and Transformation Optics , 2009, SIAM Rev..

[29]  S. Guenneau,et al.  Control of Rayleigh-like waves in thick plate Willis metamaterials , 2016, 1609.08456.

[30]  Hongyu Liu,et al.  Nearly cloaking the elastic wave fields , 2014, 1410.2525.

[31]  Miguel Patricio,et al.  Homogenisation with application to layered materials , 2008, Math. Comput. Simul..

[32]  G. Milton Composite materials with poisson's ratios close to — 1 , 1992 .

[33]  Yi-Hsuan Lin,et al.  Nearly cloaking for the elasticity system with residual stress , 2016, Asymptot. Anal..

[34]  Habib Ammari,et al.  Strong convergence of the solutions of the linear elasticity and uniformity of asymptotic expansions in the presence of small inclusions , 2012, 1212.6889.

[35]  D. Bigoni,et al.  Isotoxal star-shaped polygonal voids and rigid inclusions in nonuniform antiplane shear fields. Part I: Formulation and full-field solution , 2016, 1604.06275.

[36]  Grigorios A. Pavliotis,et al.  Cloaking via Mapping for the Heat Equation , 2017, Multiscale Model. Simul..

[37]  A. Ward,et al.  Refraction and geometry in Maxwell's equations , 1996 .

[38]  Avner Friedman,et al.  Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence , 1989 .

[39]  R. McPhedran,et al.  Making waves round a structured cloak: lattices, negative refraction and fringes , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  M. Wegener,et al.  Scattering problems in elastodynamics , 2016, 1609.09346.

[41]  G. Backus Long-Wave Elastic Anisotropy Produced by Horizontal Layering , 1962 .

[42]  Sébastien Guenneau,et al.  Static chiral Willis continuum mechanics for three-dimensional chiral mechanical metamaterials , 2019, Physical Review B.

[43]  R. Craster,et al.  Seismic Metamaterials: Controlling Surface Rayleigh Waves Using Analogies with Electromagnetic Metamaterials , 2017 .

[44]  A. Norris,et al.  Hyperelastic cloaking theory: transformation elasticity with pre-stressed solids , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Jiguang Bao,et al.  Gradient Estimates for Solutions of the Lamé System with Partially Infinite Coefficients , 2013, 1311.1278.

[46]  Robert V. Kohn,et al.  Erratum: Cloaking via change of variables for the Helmholtz equation , 2010 .

[47]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[48]  Myriam Zerrad,et al.  Spectral effectiveness of engineered thermal cloaks in the frequency regime , 2014, Scientific Reports.

[49]  Jean-François Remacle,et al.  Transformation methods in computational electromagnetism , 1994 .

[50]  A. A. Kutsenko,et al.  Effective Willis constitutive equations for periodically stratified anisotropic elastic media , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[52]  A. Novotný,et al.  Introduction to the Mathematical Theory of Compressible Flow , 2004 .

[53]  P. Ciarlet Korn's inequalities: The linear vs. the nonlinear case , 2011 .

[54]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[55]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[56]  Alexander B. Movchan,et al.  Achieving control of in-plane elastic waves , 2008, 0812.0912.

[57]  T. Ghosh,et al.  Approximate Isotropic Cloak for the Maxwell equations , 2017, 1705.01390.

[58]  R. Craster,et al.  The influence of building interactions on seismic and elastic body waves , 2019, EPJ Applied Metamaterials.

[59]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[60]  Matt Clark,et al.  Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces , 2017, Scientific Reports.

[61]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .