Gibbs Sampling Strategies for Semantic Perception of Streaming Video Data

Topic modeling of streaming sensor data can be used for high level perception of the environment by a mobile robot. In this paper we compare various Gibbs sampling strategies for topic modeling of streaming spatiotemporal data, such as video captured by a mobile robot. Compared to previous work on online topic modeling, such as o-LDA and incremental LDA, we show that the proposed technique results in lower online and final perplexity, given the realtime constraints.

[1]  Thomas L. Griffiths,et al.  Online Inference of Topics with Latent Dirichlet Allocation , 2009, AISTATS.

[2]  Alexei A. Efros,et al.  Unsupervised discovery of visual object class hierarchies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[4]  Andrew Zisserman,et al.  Geometric LDA: A Generative Model for Particular Object Discovery , 2008, BMVC.

[5]  Gregory Dudek,et al.  Autonomous adaptive exploration using realtime online spatiotemporal topic modeling , 2014, Int. J. Robotics Res..

[6]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  Gregory Dudek,et al.  Exploring Underwater Environments with Curiosity , 2014, 2014 Canadian Conference on Computer and Robot Vision.

[8]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[9]  W. Eric L. Grimson,et al.  Spatial Latent Dirichlet Allocation , 2007, NIPS.

[10]  Thomas L. Griffiths,et al.  Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.

[11]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Andrew Zisserman,et al.  Scene Classification Via pLSA , 2006, ECCV.

[13]  Gregory Dudek,et al.  Online Visual Vocabularies , 2011, 2011 Canadian Conference on Computer and Robot Vision.

[14]  David Whitney,et al.  Curiosity based exploration for learning terrain models , 2013, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Arindam Banerjee,et al.  Topic Models over Text Streams: A Study of Batch and Online Unsupervised Learning , 2007, SDM.