Filtrage conditionnel pour la trajectographie dans des séquences d'images - Application au suivi de points Conditional filters for image sequence tracking - Application to point tracker

In this paper, we propose a new conditional formulation of classical filtering methods dedicated to image sequence based tracking. These conditional filters allow to consider a state model and a measure model which both depend on the image sequence data. On this basis, we derive two filters for the point tracking problem, which authorize to cope with trajectories exhibiting abrupt changes and occlusions. They combine a dynamic relying on the optical flow constraint and measures provided by a matching technique. The first tracker is linear, well-suited to image sequences exhibiting global dominant motion. This filter is deduced through the use of a new estimator called the conditional linear minimum variance estimator. The second one is a nonlinear tracker, implemented from a particle filter. This latter allows to track points whose motion may only be locally described.

[1]  Lorenzo Torresani,et al.  Space-Time Tracking , 2002, ECCV.

[2]  Kevin Nickels,et al.  Estimating uncertainty in SSD-based feature tracking , 2002, Image Vis. Comput..

[3]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[5]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[6]  Stefano Soatto,et al.  Real-time feature tracking and outlier rejection with changes in illumination , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[7]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[8]  Michal Irani,et al.  Computing occluding and transparent motions , 1994, International Journal of Computer Vision.

[9]  Peter Allen,et al.  Image-flow computation: An estimation-theoretic framework and a unified perspective , 1992, CVGIP Image Underst..

[10]  Emanuele Trucco,et al.  Making good features track better , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[11]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[12]  Patrick Bouthemy,et al.  Region-Based Tracking Using Affine Motion Models in Long Image Sequences , 1994 .

[13]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Y. Bar-Shalom Tracking and data association , 1988 .

[15]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[16]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[17]  J. Schmetz,et al.  Operational Cloud-Motion Winds from Meteosat Infrared Images , 1993 .

[18]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[19]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[20]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[21]  Carine Hue Méthodes séquentielles de Monte Carlo pour le filtrage non linéaire multi-objets dans un environnement bruité. Applications au pistage multi-cibles et à la trajectographie d'entités dans des séquences d'images 2D , 2003 .