DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic

Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice.

[1]  D Matthaei,et al.  1H NMR chemical shift selective (CHESS) imaging. , 1985, Physics in medicine and biology.

[2]  P Boesiger,et al.  Pitfalls in lactate measurements at 3T. , 2006, AJNR. American journal of neuroradiology.

[3]  S. Provencher Estimation of metabolite concentrations from localized in vivo proton NMR spectra , 1993, Magnetic resonance in medicine.

[4]  M. Leach,et al.  Single‐shot single‐voxel lactate measurements using FOCI‐LASER and a multiple‐quantum filter , 2015, NMR in biomedicine.

[5]  Chen Jie,et al.  The value of diffusion-weighted imaging in the detection of prostate cancer: a meta-analysis , 2014, European Radiology.

[6]  Wendy B DeMartini,et al.  Improved diagnostic accuracy of breast MRI through combined apparent diffusion coefficients and dynamic contrast‐enhanced kinetics , 2011, Magnetic resonance in medicine.

[7]  Wei Huang,et al.  Demonstration of nonlinearity bias in the measurement of the apparent diffusion coefficient in multicenter trials , 2016, Magnetic resonance in medicine.

[8]  D. Collins,et al.  Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. , 2012, AJR. American journal of roentgenology.

[9]  François Cornud,et al.  Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2‐weighted, dynamic contrast‐enhanced and diffusion‐weighted imaging , 2011, BJU international.

[10]  A. Andreano,et al.  MR diffusion imaging for preoperative staging of myometrial invasion in patients with endometrial cancer: a systematic review and meta-analysis , 2014, European Radiology.

[11]  Evis Sala,et al.  Advanced ovarian cancer: multiparametric MR imaging demonstrates response- and metastasis-specific effects. , 2012, Radiology.

[12]  P A Bottomley,et al.  In vivo nuclear magnetic resonance chemical shift imaging by selective irradiation. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Babb,et al.  Comparison of interreader reproducibility of the prostate imaging reporting and data system and likert scales for evaluation of multiparametric prostate MRI. , 2013, AJR. American journal of roentgenology.

[14]  Michael Erb,et al.  Proton magnetic resonance spectroscopy with metabolite nulling reveals regional differences of macromolecules in normal human brain , 2002, Journal of magnetic resonance imaging : JMRI.

[15]  Andrew N Priest,et al.  A framework for optimization of diffusion-weighted MRI protocols for large field-of-view abdominal-pelvic imaging in multicenter studies. , 2015, Medical physics.

[16]  D. Collins,et al.  Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases , 2013, European Radiology.

[17]  Hoult,et al.  Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation. , 1985, Physical review. A, General physics.

[18]  Rebecca S Lewis,et al.  Does training in the Breast Imaging Reporting and Data System (BI-RADS) improve biopsy recommendations or feature analysis agreement with experienced breast imagers at mammography? , 2002, Radiology.

[19]  D. Vanel The American College of Radiology (ACR) Breast Imaging and Reporting Data System (BI-RADS): a step towards a universal radiological language? , 2007, European journal of radiology.

[20]  T. Schlomm,et al.  Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. , 2008, European urology.

[21]  P Boesiger,et al.  Comparison of methods for the determination of absolute metabolite concentrations in human muscles by 31P MRS , 1993, Magnetic resonance in medicine.

[22]  Jian Guan,et al.  Multiparametric 3-T MRI for differentiating low-versus high-grade and category T1 versus T2 bladder urothelial carcinoma. , 2015, AJR. American journal of roentgenology.

[23]  Arend Heerschap,et al.  Metabolite ratios in 1H MR spectroscopic imaging of the prostate , 2015, Magnetic resonance in medicine.

[24]  P. Boesiger,et al.  SENSE‐DTI at 3 T , 2004, Magnetic resonance in medicine.

[25]  Baris Turkbey,et al.  Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. , 2012, AJR. American journal of roentgenology.

[26]  Li Li,et al.  Diagnosis of Breast Masses from Dynamic Contrast-Enhanced and Diffusion-Weighted MR: A Machine Learning Approach , 2014, PloS one.

[27]  M. Oudkerk,et al.  1H chemical shift imaging reveals loss of brain tumor choline signal after administration of Gd‐contrast , 1997, Magnetic resonance in medicine.

[28]  Klaus Scheffler,et al.  Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays , 2016, Magnetic resonance in medicine.

[29]  N. deSouza,et al.  Mechanism and non-mechanism based imaging biomarkers for assessing biological response to treatment in non-small cell lung cancer. , 2016, European journal of cancer.

[30]  Martin O. Leach,et al.  Comparison of free‐breathing with navigator‐controlled acquisition regimes in abdominal diffusion‐weighted magnetic resonance images: Effect on ADC and IVIM statistics , 2014, Journal of magnetic resonance imaging : JMRI.

[31]  Jung Hee Shin,et al.  Role of diffusion-weighted imaging as an adjunct to contrast-enhanced breast MRI in evaluating residual breast cancer following neoadjuvant chemotherapy. , 2014, European journal of radiology.

[32]  Thomas Hambrock,et al.  Prostate cancer: body-array versus endorectal coil MR imaging at 3 T--comparison of image quality, localization, and staging performance. , 2007, Radiology.

[33]  H. Barnhart,et al.  The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions , 2015, Statistical methods in medical research.

[34]  S. Mendrinos,et al.  Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. , 2012, The Journal of urology.

[35]  S. Dymarkowski,et al.  Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT , 2014, European Radiology.

[36]  Ron Kikinis,et al.  Variations of dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast cancer therapy response: a multicenter data analysis challenge. , 2014, Translational oncology.

[37]  R. Gruetter,et al.  In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time , 1999, Magnetic resonance in medicine.

[38]  A. Jackson,et al.  Experimentally‐derived functional form for a population‐averaged high‐temporal‐resolution arterial input function for dynamic contrast‐enhanced MRI , 2006, Magnetic resonance in medicine.

[39]  S. Silverman,et al.  Impact of an Information Technology-Enabled Initiative on the Quality of Prostate Multiparametric MRI Reports. , 2015, Academic radiology.

[40]  Peter Börnert,et al.  Parallel magnetic resonance imaging , 2007, Neurotherapeutics.

[41]  D. Collins,et al.  Diffusion-weighted imaging of peritoneal disease for noninvasive staging of advanced ovarian cancer. , 2010, Radiographics : a review publication of the Radiological Society of North America, Inc.

[42]  D. Collins,et al.  Volume of Bone Metastasis Assessed with Whole-Body Diffusion-weighted Imaging Is Associated with Overall Survival in Metastatic Castration-resistant Prostate Cancer. , 2016, Radiology.

[43]  T. Helbich,et al.  Multiparametric MR Imaging with High-Resolution Dynamic Contrast-enhanced and Diffusion-weighted Imaging at 7 T Improves the Assessment of Breast Tumors: A Feasibility Study. , 2015, Radiology.

[44]  Li Jiang,et al.  Diagnostic significance of apparent diffusion coefficient values with diffusion weighted MRI in breast cancer: a meta- analysis. , 2014, Asian Pacific journal of cancer prevention : APJCP.

[45]  T. Gupta,et al.  Can Multiparametric MRI and FDG-PET Predict Outcome in Diffuse Brainstem Glioma? A Report from a Prospective Phase-II Study , 2014, Pediatric Neurosurgery.

[46]  B. Seifert,et al.  Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. , 2014, Radiology.

[47]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[48]  L. Guo,et al.  The utility of MRI for pre-operative T and N staging of gastric carcinoma: a systematic review and meta-analysis. , 2015, The British journal of radiology.

[49]  Michael Garwood,et al.  Solvent Suppression Using Selective Echo Dephasing , 1996 .

[50]  G Helms,et al.  Restoration of motion‐related signal loss and line‐shape deterioration of proton MR spectra using the residual water as intrinsic reference , 2001, Magnetic resonance in medicine.

[51]  Kei Yamada,et al.  Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multi-institutional comparison study. , 2008, Radiology.

[52]  Mithat Gönen,et al.  Quantitative imaging biomarkers: A review of statistical methods for technical performance assessment , 2015, Statistical methods in medical research.

[53]  T. Metens,et al.  Liver apparent diffusion coefficient repeatability with individually predetermined optimal cardiac timing and artifact elimination by signal filtering , 2016, Journal of magnetic resonance imaging : JMRI.

[54]  B D Ross,et al.  Absolute Quantitation of Water and Metabolites in the Human Brain. II. Metabolite Concentrations , 1993 .

[55]  R. B. Kingsley,et al.  WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. , 1994, Journal of magnetic resonance. Series B.

[56]  P. Westenend,et al.  Multiparametric MRI With Dynamic Contrast Enhancement, Diffusion-Weighted Imaging, and 31-Phosphorus Spectroscopy at 7 T for Characterization of Breast Cancer , 2015, Investigative radiology.

[57]  Timothy D Johnson,et al.  Development of a Multiparametric Voxel-Based Magnetic Resonance Imaging Biomarker for Early Cancer Therapeutic Response Assessment , 2015, Tomography.

[58]  Matthew D. Robson,et al.  Coil combination for receive array spectroscopy: Are data‐driven methods superior to methods using computed field maps? , 2015, Magnetic resonance in medicine.

[59]  Epsrc Cancer Optimising diffusion-weighted imaging in the abdomen and pelvis:comparison of image quality between monopolar and bipolar single-shot spin-echo echo-planar sequences , 2010 .

[60]  Shyam Natarajan,et al.  The role of magnetic resonance imaging in delineating clinically significant prostate cancer. , 2014, Urology.

[61]  Theodoros Soldatos,et al.  Multiparametric Assessment of Treatment Response in High-Grade Soft-Tissue Sarcomas with Anatomic and Functional MR Imaging Sequences. , 2016, Radiology.

[62]  Young Hwan Kim,et al.  Low-risk prostate cancer: the accuracy of multiparametric MR imaging for detection. , 2014, Radiology.

[63]  F J Gilbert,et al.  The Royal College of Radiologists Breast Group breast imaging classification. , 2009, Clinical radiology.

[64]  J. Angulo,et al.  Evaluación de la invasión extracapsular y otros parámetros de estadificación mediante resonancia nuclear magnética multiparamétrica en pacientes con cáncer de próstata candidatos a prostatectomía radical , 2014 .

[65]  Kim Mouridsen,et al.  Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction , 2011, Acta radiologica.

[66]  M. Jinzaki,et al.  Prognostic value of preoperative multiparametric magnetic resonance imaging (MRI) for predicting biochemical recurrence after radical prostatectomy , 2014, BJU international.

[67]  Carles Arús,et al.  Automated quality control protocol for MR spectra of brain tumors , 2008, Magnetic resonance in medicine.

[68]  M. Koch,et al.  An assessment of eddy current sensitivity and correction in single-shot diffusion-weighted imaging. , 2000, Physics in medicine and biology.

[69]  J. Zalcberg,et al.  Radiology reporting templates in oncology: A time for change , 2009, Journal of medical imaging and radiation oncology.

[70]  P. Stanwell,et al.  Multiparametric MRI as an outcome predictor for anal canal cancer managed with chemoradiotherapy , 2015, BMC Cancer.

[71]  L. Wald,et al.  Lactate detection at 3T: Compensating J coupling effects with BASING , 1999, Journal of magnetic resonance imaging : JMRI.

[72]  D. Dearnaley,et al.  Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters , 2015, European Radiology.

[73]  Katarzyna J Macura,et al.  Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. , 2010, Radiology.

[74]  Daniel M. Spielman,et al.  Utility of multiparametric 3-T MRI for glioma characterization , 2013, Neuroradiology.

[75]  H Alberto Vargas,et al.  Diffusion-weighted MRI of the prostate at 3.0 T: comparison of endorectal coil (ERC) MRI and phased-array coil (PAC) MRI-The impact of SNR on ADC measurement. , 2013, European journal of radiology.

[76]  T. Brown,et al.  Noninvasive phosphorus magnetic resonance spectroscopic imaging predicts outcome to first-line chemotherapy in newly diagnosed patients with diffuse large B-cell lymphoma. , 2013, Academic Radiology.

[77]  S. Provencher Automatic quantitation of localized in vivo 1H spectra with LCModel , 2001, NMR in biomedicine.

[78]  Erich P Huang,et al.  Metrology Standards for Quantitative Imaging Biomarkers. , 2015, Radiology.

[79]  B. Turkbey,et al.  Multiparametric magnetic resonance imaging outperforms the Prostate Cancer Prevention Trial risk calculator in predicting clinically significant prostate cancer , 2014, Cancer.

[80]  M. Gollub,et al.  Multiparametric MRI of Rectal Cancer in the Assessment of Response to Therapy: A Systematic Review , 2014, Diseases of the colon and rectum.

[81]  Martin O Leach,et al.  Diffusion-weighted MR imaging of metastatic abdominal and pelvic tumours is sensitive to early changes induced by a VEGF inhibitor using alternative diffusion attenuation models , 2015, European Radiology.

[82]  P. Allen,et al.  In vivo NMR spectroscopy. , 1990, Basic life sciences.

[83]  D. Collins,et al.  Assessment of Treatment Response by Total Tumor Volume and Global Apparent Diffusion Coefficient Using Diffusion-Weighted MRI in Patients with Metastatic Bone Disease: A Feasibility Study , 2014, PloS one.

[84]  G. Morgan,et al.  Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. , 2014, Radiology.

[85]  I R Young,et al.  Design and use of internal receiver coils for magnetic resonance imaging. , 1999, The British journal of radiology.

[86]  R. Saouaf,et al.  Multiparametric MRI Improves Accuracy of Clinical Nomograms for Predicting Extracapsular Extension of Prostate Cancer. , 2015, Urology.

[87]  R. Ordidge,et al.  Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy , 1996, Magnetic resonance in medicine.

[88]  David L Weiss,et al.  Structured reporting: patient care enhancement or productivity nightmare? , 2008, Radiology.

[89]  Qiong Li,et al.  A systematic review and meta-analysis of the accuracy of diffusion-weighted MRI in the detection of malignant pulmonary nodules and masses. , 2014, Academic Radiology.

[90]  A Macovski,et al.  1H spectroscopic imaging using a spectral‐spatial excitation pulse , 1991, Magnetic resonance in medicine.

[91]  Vikas Gulani,et al.  Clinical applications of dual‐channel transmit MRI: A review , 2015, Journal of magnetic resonance imaging : JMRI.

[92]  E Adalsteinsson,et al.  Motion correction and lipid suppression for 1H magnetic resonance spectroscopy , 2000, Magnetic resonance in medicine.

[93]  Michael Schär,et al.  On restoring motion‐induced signal loss in single‐voxel magnetic resonance spectra , 2006, Magnetic resonance in medicine.

[94]  D. Collins,et al.  Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. , 2011, AJR. American journal of roentgenology.

[95]  Peter Boesiger,et al.  Volume tracking cardiac 31P spectroscopy , 2002, Magnetic resonance in medicine.

[96]  L DelaBarre,et al.  The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.

[97]  Dennis W J Klomp,et al.  Short echo time 1H‐MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses , 2008, Magnetic resonance in medicine.

[98]  M. Leach,et al.  The effect of Gd-DTPA on T(1)-weighted choline signal in human brain tumours. , 2002, Magnetic resonance imaging.

[99]  Jiani Hu,et al.  A pooled analysis of diffusion‐weighted imaging in the diagnosis of hepatocellular carcinoma in chronic liver diseases , 2013, Journal of gastroenterology and hepatology.

[100]  S. Matsumoto,et al.  Detection of bone metastases in non‐small cell lung cancer patients: Comparison of whole‐body diffusion‐weighted imaging (DWI), whole‐body MR imaging without and with DWI, whole‐body FDG‐PET/CT, and bone scintigraphy , 2009, Journal of magnetic resonance imaging : JMRI.

[101]  P. Choyke,et al.  Multiparametric magnetic resonance imaging and image-guided biopsy to detect seminal vesicle invasion by prostate cancer. , 2014, Journal of endourology.

[102]  M. Beer,et al.  Multiparametric MRI of the prostate with three functional techniques in patients with PSA elevation before initial TRUS-guided biopsy. , 2015, The British journal of radiology.

[103]  T. Helbich,et al.  Improved Diagnostic Accuracy With Multiparametric Magnetic Resonance Imaging of the Breast Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging, Diffusion-Weighted Imaging, and 3-Dimensional Proton Magnetic Resonance Spectroscopic Imaging , 2014, Investigative radiology.

[104]  N. H. Douglas,et al.  Phantom for assessment of fat suppression in large field-of-view diffusion-weighted magnetic resonance imaging , 2014, Physics in medicine and biology.

[105]  Roland Kreis,et al.  The trouble with quality filtering based on relative Cramér‐Rao lower bounds , 2016, Magnetic resonance in medicine.

[106]  Vanhamme,et al.  Improved method for accurate and efficient quantification of MRS data with use of prior knowledge , 1997, Journal of magnetic resonance.

[107]  J. Slotboom,et al.  Adiabatic slice-selective rf pulses and a single-shot adiabatic localization pulse sequence , 1995 .

[108]  Dwight G. Nishimura,et al.  SNR Dependence of Optimal Parameters for Apparent Diffusion Coefficient Measurements , 2011, IEEE Transactions on Medical Imaging.

[109]  Shang-Yueh Tsai,et al.  Quantification of non–water‐suppressed MR spectra with correction for motion‐induced signal reduction , 2009, Magnetic resonance in medicine.

[110]  D. Collins,et al.  Assessment of repeatability and treatment response in early phase clinical trials using DCE-MRI: comparison of parametric analysis using MR- and CT-derived arterial input functions , 2015, European Radiology.

[111]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[112]  T. Obata,et al.  Detection of bone metastases using diffusion weighted magnetic resonance imaging: comparison with (11)C-methionine PET and bone scintigraphy. , 2010, Magnetic resonance imaging.

[113]  John Suckling,et al.  Informatics in Radiology (infoRAD): Magnetic Resonance Imaging Workbench: analysis and visualization of dynamic contrast-enhanced MR imaging data. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[114]  A. Heerschap,et al.  Proton spectroscopic imaging of the human prostate at 7 T , 2009, NMR in biomedicine.

[115]  A. Ravaud,et al.  Multiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinoma , 2014, European Radiology.

[116]  Wei Tse Yang,et al.  Identification of Intrinsic Imaging Phenotypes for Breast Cancer Tumors: Preliminary Associations with Gene Expression Profiles , 2015 .

[117]  Andrew A Maudsley,et al.  Whole‐brain quantitative mapping of metabolites using short echo three‐dimensional proton MRSI , 2015, Journal of magnetic resonance imaging : JMRI.

[118]  D. Hammoud,et al.  Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. , 2011, Neuro-oncology.

[119]  Daniel B Vigneron,et al.  Respiratory motion-corrected proton magnetic resonance spectroscopy of the liver. , 2009, Magnetic resonance imaging.

[120]  H. Hricak,et al.  Improving Communication of Diagnostic Radiology Findings through Structured Reporting 1 , 2011 .

[121]  D. Margolis,et al.  PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. , 2016, European urology.

[122]  L. Kiemeney,et al.  The predictive value of endorectal 3 Tesla multiparametric magnetic resonance imaging for extraprostatic extension in patients with low, intermediate and high risk prostate cancer. , 2013, The Journal of urology.

[123]  D. Graveron-Demilly,et al.  Java-based graphical user interface for the MRUI quantitation package , 2001, Magnetic Resonance Materials in Physics, Biology and Medicine.

[124]  E. Burnside,et al.  The ACR BI-RADS experience: learning from history. , 2009, Journal of the American College of Radiology : JACR.

[125]  J. Meuwly,et al.  Can 3T multiparametric magnetic resonance imaging accurately detect prostate cancer extracapsular extension? , 2013, Canadian Urological Association journal = Journal de l'Association des urologues du Canada.

[126]  Anders Dale,et al.  Prospective motion correction for single‐voxel 1H MR spectroscopy , 2010, Magnetic resonance in medicine.

[127]  Karin Haustermans,et al.  Multiparametric MRI for prostate cancer localization in correlation to whole‐mount histopathology , 2013, Journal of magnetic resonance imaging : JMRI.

[128]  Jeroen J. Bax,et al.  Metabolic imaging of myocardial triglyceride content: reproducibility of 1H MR spectroscopy with respiratory navigator gating in volunteers. , 2007, Radiology.

[129]  L. Martiniova,et al.  [18F]FBEM-ZHER2:342-Affibody molecule—a new molecular tracer for in vivo monitoring of HER2 expression by positron emission tomography , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[130]  J. Ferretti,et al.  Selection of optimum parameters for pulse Fourier transform nuclear magnetic resonance , 1979 .

[131]  J. Kurhanewicz,et al.  Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer , 2000, Magnetic resonance in medicine.

[132]  J R Griffiths,et al.  Clinical studies. , 2005, Advances in pharmacology.

[133]  Peter R Luijten,et al.  Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free‐breathing diffusion‐weighted MR imaging of the liver , 2008, Journal of magnetic resonance imaging : JMRI.

[134]  Thomas E Yankeelov,et al.  Multiparametric Magnetic Resonance Imaging for Predicting Pathological Response After the First Cycle of Neoadjuvant Chemotherapy in Breast Cancer , 2015, Investigative radiology.

[135]  P. Choyke,et al.  The Role of Magnetic Resonance Image Guided Prostate Biopsy in Stratifying Men for Risk of Extracapsular Extension at Radical Prostatectomy. , 2015, The Journal of urology.

[136]  J. Angulo,et al.  Multiparametric magnetic resonance imaging for the assessment of extracapsular invasion and other staging parameters in patients with prostate cancer candidates for radical prostatectomy. , 2014, Actas urologicas espanolas.

[137]  Li Zhang,et al.  Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis , 2016, Acta radiologica.

[138]  D. J. Collins,et al.  Diffusion-weighted magnetic resonance imaging for assessment of lung lesions: repeatability of the apparent diffusion coefficient measurement , 2014, European Radiology.