Blind Submarine Seismic Deconvolution for Long Source Wavelets

In seismic deconvolution, blind approaches must be considered in situations where reflectivity sequence, source wavelet signal, and noise power level are unknown. In the presence of long source wavelets, strong interference among the reflectors contributions makes the wavelet estimation and deconvolution more complicated. In this paper, we solve this problem in a two-step approach. First, we estimate a moving average (MA) truncated version of the wavelet by means of a stochastic expectation-maximization (SEM) algorithm. Then, we use Prony's method to improve the wavelet estimation accuracy by fitting an autoregressive moving average (ARMA) model with the initial truncated wavelet. Moreover, a solution to the wavelet initialization problem in the SEM algorithm is also proposed. Simulation and real-data experiment results show the significant improvement brought by this approach.

[1]  Patrick Duvaut,et al.  Bayesian estimation of state-space models applied to deconvolution of Bernoulli - Gaussian processes , 1997, Signal Process..

[2]  Yves Goussard,et al.  Multichannel seismic deconvolution , 1993, IEEE Trans. Geosci. Remote. Sens..

[3]  Benayad Nsiri,et al.  SEM blind identification of ARMA models application to seismic data , 2004, 2004 12th European Signal Processing Conference.

[4]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[5]  D. Donoho ON MINIMUM ENTROPY DECONVOLUTION , 1981 .

[6]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[7]  Chrysostomos L. Nikias,et al.  ARMA bispectrum approach to nonminimum phase system identification , 1988, IEEE Trans. Acoust. Speech Signal Process..

[8]  Rong Chen,et al.  Simultaneous wavelet estimation and deconvolution of reflection seismic signals , 1996, IEEE Trans. Geosci. Remote. Sens..

[9]  Gilles Celeux,et al.  On Stochastic Versions of the EM Algorithm , 1995 .

[10]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Eric Moulines,et al.  A simulated annealing version of the EM algorithm for non-Gaussian deconvolution , 1997, Stat. Comput..

[12]  Olivier Rosec Deconvolution aveugle multicapteur en sismique reflexion marine tres haute resolution , 2000 .

[13]  Olivier Rosec,et al.  Bayesian estimation of non-minimum phase wavelets applied to marine reflection seismic data , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[14]  Marc Lavielle,et al.  Bayesian deconvolution of Bernoulli-Gaussian processes , 1993, Signal Process..

[15]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[16]  Thierry Chonavel,et al.  Estimation of Multipath Channels With Long Impulse Response at Low SNR via an MCMC Method , 2007, IEEE Transactions on Signal Processing.

[17]  J. Troutman Variational Calculus and Optimal Control: Optimization with Elementary Convexity , 1995 .

[18]  T. Chonavel,et al.  Statistical Signal Processing: Modelling and Estimation , 2002 .

[19]  G. Celeux,et al.  Stochastic versions of the em algorithm: an experimental study in the mixture case , 1996 .

[20]  Benayad Nsiri,et al.  Multichannel blind deconvolution application to marine seismic , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[21]  G. Celeux,et al.  A stochastic approximation type EM algorithm for the mixture problem , 1992 .

[22]  Jerry M. Mendel,et al.  Maximum-Likelihood Deconvolution , 1989 .

[23]  Ehud Weinstein,et al.  Parameter estimation of superimposed signals using the EM algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[24]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[25]  Christian Jutten,et al.  Frequency-domain blind deconvolution based on mutual information rate , 2006, IEEE Transactions on Signal Processing.

[26]  Benayad Nsiri,et al.  Blind marine seismic deconvolution using statistical MCMC methods , 2003 .

[27]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[28]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[29]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[30]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[31]  Sven Treitel,et al.  Geophysical Signal Analysis , 2000 .

[32]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[33]  Mouad Boumahdi,et al.  Blind identification using the kurtosis with applications to field data , 1996, Signal Process..

[34]  Kjetil F. Kaaresen,et al.  Deconvolution of sparse spike trains by iterated window maximization , 1997, IEEE Trans. Signal Process..

[35]  Jean-Marc Boucher,et al.  Higher order statistics applied to wavelet identification of marine seismic signals , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[36]  T. W. Parks,et al.  Digital Filter Design , 1987 .