Cramming versus threading of long amphiphilic oligomers into a polyaromatic capsule

[1]  M. Yoshizawa,et al.  Hydrophilic Oligo(lactic acid)s Captured by a Hydrophobic Polyaromatic Cavity in Water. , 2018, Angewandte Chemie.

[2]  M. Ward,et al.  Binding of Hydrophobic Guests in a Coordination Cage Cavity is Driven by Liberation of “High‐Energy” Water , 2017, Chemistry.

[3]  A. Kuzume,et al.  Exact mass analysis of sulfur clusters upon encapsulation by a polyaromatic capsular matrix , 2017, Nature Communications.

[4]  S. Hayashi,et al.  A polyaromatic nanocapsule as a sucrose receptor in water , 2017, Science Advances.

[5]  M. Yoshizawa,et al.  Coordination-driven Nanostructures with Polyaromatic Shells , 2017 .

[6]  P. J. Lusby,et al.  Maximizing Coordination Capsule-Guest Polar Interactions in Apolar Solvents Reveals Significant Binding. , 2016, Angewandte Chemie.

[7]  M. Sartin,et al.  Preparation of Highly Fluorescent Host-Guest Complexes with Tunable Color upon Encapsulation. , 2015, Journal of the American Chemical Society.

[8]  Timothy R Cook,et al.  Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. , 2015, Chemical reviews.

[9]  Feihe Huang,et al.  Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. , 2015, Chemical reviews.

[10]  B. Gibb,et al.  Molecular containers assembled through the hydrophobic effect. , 2015, Chemical Society reviews.

[11]  J. Nitschke,et al.  Molecular containers in complex chemical systems. , 2015, Chemical Society reviews.

[12]  Hans-Jörg Schneider,et al.  The hydrophobic effect revisited--studies with supramolecular complexes imply high-energy water as a noncovalent driving force. , 2014, Angewandte Chemie.

[13]  M. Yoshizawa,et al.  Safe storage of radical initiators within a polyaromatic nanocapsule , 2014, Nature Communications.

[14]  Gang Zhang,et al.  Organic cage compounds--from shape-persistency to function. , 2014, Chemical Society reviews.

[15]  Ana M. Belenguer,et al.  Enantiopure water-soluble [Fe4L6] cages: host-guest chemistry and catalytic activity. , 2013, Angewandte Chemie.

[16]  J. Siegel,et al.  Wide-ranging host capability of a Pd(II)-linked M2L4 molecular capsule with an anthracene shell. , 2013, Chemistry.

[17]  J. Rebek,et al.  More chemistry in small spaces. , 2013, Accounts of chemical research.

[18]  M. Yoshizawa,et al.  A bowl-shaped organic host using bispyridine ligands: selective encapsulation of carbonyl guests in water. , 2013, Chemical communications.

[19]  B. Gibb,et al.  Guest-mediated switching of the assembly state of a water-soluble deep-cavity cavitand. , 2013, Chemical communications.

[20]  Oren A Scherman,et al.  Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. , 2012, Journal of the American Chemical Society.

[21]  H. Amouri,et al.  Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration , 2012 .

[22]  H. Amouri,et al.  Confined nanospaces in metallocages: guest molecules, weakly encapsulated anions, and catalyst sequestration. , 2012, Chemical reviews.

[23]  M. Yoshizawa,et al.  An M2L4 molecular capsule with an anthracene shell: encapsulation of large guests up to 1 nm. , 2011, Journal of the American Chemical Society.

[24]  Johannes Karl Fink,et al.  Handbook of Engineering and Specialty Thermoplastics: Water Soluble Polymers , 2011 .

[25]  Hideki Tanaka,et al.  Unveiling thermal transitions of polymers in subnanometre pores , 2010, Nature communications.

[26]  M. Fujita,et al.  Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. , 2009, Angewandte Chemie.

[27]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[28]  B. Gibb,et al.  Straight-chain alkanes template the assembly of water-soluble nano-capsules. , 2007, Chemical communications.

[29]  Ya‐Ping Sun,et al.  NMR detection of single-walled carbon nanotubes in solution. , 2005, Journal of the American Chemical Society.

[30]  J. Rebek,et al.  Helical folding of alkanes in a self-assembled, cylindrical capsule. , 2004, Journal of the American Chemical Society.

[31]  J. Rebek,et al.  Encapsulation induces helical folding of alkanes. , 2003, Angewandte Chemie.

[32]  L. Ley,et al.  Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. , 2003, Journal of the American Chemical Society.

[33]  A. J. Goshe,et al.  Molecular recognition. Electrostatic effects in supramolecular self-assembly. , 2003, Chemical communications.

[34]  Toshiaki Takahashi,et al.  Inclusion of Poly(ethylene glycol)s by Crystalline (R)-(1-Naphthyl)glycyl-(R)-phenylglycine , 2001 .

[35]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[36]  Jean-Pierre Sauvage,et al.  Molecular Catenanes, Rotaxanes and Knots , 1999 .

[37]  W. L. Jorgensen Supramolecular chemistry. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Akira Harada,et al.  The molecular necklace: a rotaxane containing many threaded α-cyclodextrins , 1992, Nature.

[39]  Akira Harada,et al.  Complex formation between poly(ethylene glycol) and α-cyclodextrin , 1990 .

[40]  J. Behr The Lock-and-key principle : the state of the art -- 100 years on , 1994 .

[41]  J. M. Harris,et al.  Poly(Ethylene Glycol) Chemistry Biotechnical and Biomedical Applications , 1992 .

[42]  J. M. Harris,et al.  Poly(Ethylene Glycol) Chemistry , 1992 .