Direct determination of the Gibbs' energy of formation of peroxynitrous acid.

The kinetics of decomposition of peroxynitrous acid (ONOOH) was investigated in the presence of 0.1-0.75 M HClO(4) and at a constant ionic strength. The decay rate of ONOOH decreased in the presence of H(2)O(2), approaching a limiting value well below 75 mM H(2)O(2). It also decreased in the presence of relatively low [HNO(2)] but did not approach a lower limiting value, since ONOOH reacts directly with HNO(2). The latter reaction corresponds to a HNO(2)- and H(+)-catalyzed isomerization of ONOOH to nitrate, and its third-order rate constant was determined to be 520 +/- 30 M(-)(2) s(-)(1). The mechanism of formation of O(2)NOOH from ONOOH in the presence of H(2)O(2) was also scrutinized. The results demonstrated that in the presence of 0.1-0.75 M HClO(4) and 75 mM H(2)O(2) the formation of O(2)NOOH is insignificant. The most important finding in this work is the reversibility of the reaction ONOOH + H(2)O right harpoon over left harpoon HNO(2) + H(2)O(2), and its equilibrium constant was determined to be (7.5 +/- 0.4) x 10(-)(4) M. Using this value, the Gibbs' energy of formation of ONOOH was calculated to be 7.1 +/- 0.2 kcal/mol. This figure is in good agreement with the value determined previously from kinetic data using parameters for radicals formed during homolysis of peroxynitrite.