Computational Neural Networks — Tools for Spatial Data Analysis

The proliferation and dissemination of digital spatial databases, coupled with the ever wider use of Geographic Information Systems [GIS] and Remote Sensing [RS] data, is stimulating increasing interest in spatial analysis from outside the spatial sciences. The recognition of the spatial dimension in social science research sometimes yields different and more meaningful results than analysis that ignores it.

[1]  A. Strahler,et al.  Artificial neural network response to mixed pixels in coarse-resolution satellite data , 1996 .

[2]  Yee Leung Towards the development of an intelligent spatial decision support system , 1993 .

[3]  Stephen Grossberg,et al.  ARTMAP: supervised real-time learning and classification of nonstationary data by a self-organizing neural network , 1991, [1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering.

[4]  Kanellopoulos Ioannis,et al.  Integration of Neural and Statistical Approaches in Spatial-Data Classification , 1995 .

[5]  Stan Openshaw Developing Automated and Smart Spatial Pattern Exploration Tools for Geographical Information Systems Applications , 1995 .

[6]  Manfred M. Fischer,et al.  Optimization in an Error Backpropagation Neural Network Environment with a Performance Test on a Spectral Pattern Classification Problem , 1999 .

[7]  Stan Openshaw Modelling spatial interaction using a neural net , 1993 .

[8]  Manfred M. Fischer,et al.  A Gobal Search Procedure forParameter Estimation inNeural Spatial Interaction Modelling , 1998 .

[9]  Manfred M. Fischer,et al.  A multiregional labour supply model for Austria: The effects of different regionalisations in multiregional labour market modelling , 1983 .

[10]  Manfred M. Fischer,et al.  Methodological Challenges in Neural Spatial Interaction Modelling: The Issue of Model Selection , 2000 .

[11]  Yee Leung,et al.  Neural networks for convex hull computation , 1997, IEEE Trans. Neural Networks.

[12]  Terence R. Smith,et al.  KBGIS-II A knowledge-based geographical information system , 1986, Int. J. Geogr. Inf. Sci..

[13]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[14]  Stephen I. Gallant,et al.  Neural network learning and expert systems , 1993 .

[15]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[16]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[17]  Manfred M. Fischer Fundamentals in Neurocomputing , 1994 .

[18]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[19]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[20]  Manfred M. Fischer,et al.  Computational Neural Networks: A New Paradigm for Spatial Analysis , 1998 .

[21]  Colin Fyfe,et al.  A neural implementation of canonical correlation analysis , 1999, Neural Networks.

[22]  Jon Atli Benediktsson,et al.  Classification of multisource and hyperspectral data based on decision fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[23]  Xin Yao,et al.  Ensemble learning via negative correlation , 1999, Neural Networks.

[24]  S. Openshaw A million or so correlation coefficients : three experiments on the modifiable areal unit problem , 1979 .

[25]  S. Gopal,et al.  Remote sensing of forest change using artificial neural networks , 1996, IEEE Trans. Geosci. Remote. Sens..

[26]  Halbert White,et al.  Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings , 1990, Neural Networks.

[27]  Yee Leung,et al.  Feedforward Neural Network Models for Spatial Data Classification and Rule Learning , 1997 .

[28]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[29]  Robert P. Haining,et al.  Designing spatial data analysis modules for geographical information systems , 1994 .

[30]  Manfred M. Fischer,et al.  Intelligent GI Analysis , 1999 .

[31]  Robert Haining,et al.  Regionalisation Tools for the Exploratory Spatial Analysis of Health Data , 1997 .

[32]  Manfred M. Fischer Computational Neural Networks:An attractive class of mathematical modelsfor transportation research , 1997 .

[33]  Manfred M. Fischer,et al.  Fuzzy ARTMAP — A Neural Classifier for Multispectral Image Classification , 1997 .

[34]  Xin Yao,et al.  Simultaneous training of negatively correlated neural networks in an ensemble , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[35]  Manfred M. Fischer,et al.  ARTIFICIAL NEURAL NETWORKS: A NEW APPROACH TO MODELING INTERREGIONAL TELECOMMUNICATION FLOWS* , 1994 .

[36]  Yee Leung,et al.  Intelligent spatial decision support systems , 1997 .

[37]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[38]  David E. Rumelhart,et al.  Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..

[39]  Robert Tibshirani,et al.  A Comparison of Some Error Estimates for Neural Network Models , 1996, Neural Computation.

[40]  Manfred M. Fischer,et al.  Evaluation of Neural Pattern Classifiers for a Remote Sensing Application , 1995 .

[41]  Yee Leung,et al.  The optimal encodings for biased association in linear associative memories , 1998, Neural Networks.

[42]  Manfred M. Fischer,et al.  A genetic-algorithms based evolutionary computational neural network for modelling spatial interaction dataNeural network for modelling spatial interaction data , 1998 .

[43]  Manfred M. Fischer,et al.  Neural net based interregional telephone traffic models , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[44]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..