Formalisation of a data analysis environment based on anomaly detection for risk assessment : Application to Maritime Domain Awareness

At sea, various systems enable vessels to be aware of their environment and on the coast, those systems, such as radar, provide a picture of the maritime traffic to the coastal states. One of those systems, the Automatic Identification System (AIS) is used for security purposes (anti-collision) and as a tool for on-shore bodies as a control and surveillance and decision-support tool.An assessment of AIS based on data quality dimensions is proposed, in which integrity is highlighted as the most important of data quality dimensions. As the structure of AIS data is complex, a list of integrity items have been established, their purpose being to assess the consistency of the data within the data fields with the technical specifications of the system and the consistency of the data fields within themselves in a message and between the different messages. In addition, the use of additional data (such as fleet registers) provides additional information to assess the truthfulness and the genuineness of an AIS message and its sender.The system is weekly secured and bad quality data have been demonstrated, such as errors in the messages, data falsification or data spoofing, exemplified in concrete cases such as identity theft or vessel voluntary disappearances. In addition to message assessment, a set of threats have been identified, and an assessment of the associated risks is proposed, allowing a better comprehension of the maritime situation and the establishment of links between the vulnerabilities caused by the weaknesses of the system and the maritime risks related to the safety and security of maritime navigation.

[1]  Etienne Martineau,et al.  Maritime Anomaly Detection: Domain Introduction and Review of Selected Literature , 2011 .

[2]  Marco Balduzzi,et al.  A Security Evaluation of AIS , 2014 .

[3]  Bilal Idiri Méthodologie d’extraction de connaissances spatio-temporelles par fouille de données pour l’analyse de comportements à risques : application à la surveillance maritime , 2013 .

[4]  Changqing Liu,et al.  Inference of Single Vessel Behaviour with Incomplete Satellite-based AIS Data , 2013, Journal of Navigation.

[5]  Robert Weibel,et al.  Towards a taxonomy of movement patterns , 2008, Inf. Vis..

[6]  Regional marine spatial planning – The data collection and mapping process , 2014 .

[7]  A. Boudraa,et al.  Détection d’anomalies des signaux AIS à partir de la fréquence instantanée , 2017 .

[8]  Nikos Pelekis,et al.  Efficient AIS Data Processing for Environmentally Safe Shipping , 2013 .

[9]  Lars Linsen,et al.  How automatic identification system (AIS) antenna setup affects AIS signal quality , 2015 .

[10]  David N. Wiley,et al.  Modeling speed restrictions to mitigate lethal collisions between ships and whales in the Stellwagen Bank National Marine Sanctuary, USA , 2011 .

[11]  A. Weintrit,et al.  Clustering analysis and identification of marine traffic congested zones at Wusongkou, Shanghai , 2010 .

[12]  Clément Iphar,et al.  Detection of false AIS messages for the improvement of maritime situational awareness , 2015, OCEANS 2015 - MTS/IEEE Washington.

[13]  J. Kukkonen,et al.  A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area , 2009 .

[14]  Hans Wehn,et al.  Maritime Situation Analysis: A Multi-vessel Interaction and Anomaly Detection Framework , 2014, 2014 IEEE Joint Intelligence and Security Informatics Conference.

[15]  M. Gucma Combination of Processing Methods for Various Simulation Data Sets , 2008 .

[16]  Maurice Glandrup Improving Situation Awareness in the Maritime Domain , 2013, Situation Awareness with Systems of Systems.

[17]  Thomas Fritz,et al.  Ship Surveillance With TerraSAR-X , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Dario Tarchi,et al.  AIS reception characterisation for AIS on/off anomaly detection , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[19]  H.H. Lee,et al.  The Realization of the Performance Estimation System on AIS SOTDMA Algorithm , 2007, 2007 5th IEEE International Conference on Industrial Informatics.

[20]  Asunción Gómez-Pérez,et al.  Ontological Engineering: A state of the Art , 1999 .

[21]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..

[22]  P.A. McGillivary,et al.  Marine Ship Automatic Identification System (AIS) for Enhanced Coastal Security Capabilities: An Oil Spill Tracking Application , 2007, OCEANS 2007.

[23]  Cyril Ray,et al.  Semantic management of moving objects: A vision towards smart mobility , 2015, Expert Syst. Appl..

[24]  T Moan,et al.  Computer Vision and Ship Traffic Analysis: Inferring Maneuver Patterns From the Automatic Identification System , 2010 .

[25]  Jong Wook Han,et al.  Protection Method for Data Communication between ADS-B Sensor and Next-Generation Air Traffic Control Systems , 2014, Inf..

[26]  Anne-Laure Jousselme,et al.  Data-driven detection and context-based classification of maritime anomalies , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[27]  Kurt Schwehr Vessel Tracking Using the Automatic Identification System ( AIS ) During Emergency Response : Lessons from the Deepwater Horizon Incident , 2011 .

[28]  J. Kukkonen,et al.  A Comprehensive Inventory of the Ship Traffic Exhaust Emissions in the Baltic Sea from 2006 to 2009 , 2013, AMBIO.

[29]  Amedeo Napoli Une introduction aux logiques de descriptions , 1997 .

[30]  Brian Polagye,et al.  A vessel noise budget for Admiralty Inlet, Puget Sound, Washington (USA). , 2012, The Journal of the Acoustical Society of America.

[31]  Liu Chang Study of AIS communication protocol in VTS , 2010, 2010 2nd International Conference on Signal Processing Systems.

[32]  Vipin Kumar,et al.  Feature Selection: A literature Review , 2014, Smart Comput. Rev..

[33]  Denis Gouin,et al.  Visual analytics for maritime domain awareness , 2011, 2011 IEEE International Conference on Technologies for Homeland Security (HST).

[34]  Lars Linsen,et al.  Comprehensive Analysis of Automatic Identification System (AIS) Data in Regard to Vessel Movement Prediction , 2014 .

[35]  Gudrun Høye,et al.  New possible roles of small satellites in maritime surveillance , 2005 .

[36]  Simon Plass,et al.  An advanced AIS receiver using a priori information , 2015, OCEANS 2015 - Genova.

[37]  Kevin Fall,et al.  Enhancing AIS to improve whale-ship collision avoidance and maritime security , 2009, OCEANS 2009.

[38]  Michael L. Brodie Data quality in information systems , 1980, Inf. Manag..

[39]  W. Gilmore Combating International Drug Trafficking: The 1988 United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances , 1991 .

[40]  M. Anusha,et al.  Big Data-Survey , 2016 .

[41]  Ivan Martinovic,et al.  On the Security of the Automatic Dependent Surveillance-Broadcast Protocol , 2013, IEEE Communications Surveys & Tutorials.

[42]  Fangliang Xiao,et al.  AIS DATA ANALYSIS FOR REALISTIC SHIP TRAFFIC SIMULATION MODEL , 2012 .

[43]  Sotirios Terzis,et al.  The Many Faces of Trust , 2009 .

[44]  Andrei Costin,et al.  Ghost in the Air(Traffic): On insecurity of ADS-B protocol and practical attacks on ADS-B devices , 2012 .

[45]  P. F. MacDoran,et al.  Spoofing Mitigation, Robust Collision Avoidance, and Opportunistic Receiver Localisation Using a New Signal Processing Scheme for ADS-B or AIS , 2014 .

[46]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[47]  Xinping Yan,et al.  A spatial–temporal forensic analysis for inland–water ship collisions using AIS data , 2013 .

[48]  P.A. Lessing,et al.  Use of the Automatic Identification System (AIS) on Autonomous Weather Buoys for Maritime Domain Awareness Applications , 2006, OCEANS 2006.

[49]  Ivan Martinovic,et al.  Experimental Analysis of Attacks on Next Generation Air Traffic Communication , 2013, ACNS.

[50]  P. Silveira,et al.  Use of AIS Data to Characterise Marine Traffic Patterns and Ship Collision Risk off the Coast of Portugal , 2013, Journal of Navigation.

[51]  Biagio Ciuffo,et al.  Estimating air emissions from ships: Meta-analysis of modelling approaches and available data sources , 2011 .

[52]  Alberto Ginesi,et al.  Satellite‐based vessel Automatic Identification System: A feasibility and performance analysis , 2011, Int. J. Satell. Commun. Netw..

[53]  William A. Wallace,et al.  Trust in digital information , 2008, J. Assoc. Inf. Sci. Technol..

[54]  I. Davidson Anomaly Detection, Explanation and Visualization , 2022 .

[55]  Aldo Napoli,et al.  A method for integrity assessment of information in a worldwide maritime localization system , 2016, GIScience 2016.

[56]  Laurent Étienne,et al.  Trajectory Box Plot; a New Pattern to Summarize Movements , 2015 .

[57]  Esteban Zimányi,et al.  Advocacy for External Quality in GIS , 2011, GeoS.

[58]  Stefano Spaccapietra,et al.  Semantic trajectories modeling and analysis , 2013, CSUR.

[59]  C. Clark,et al.  Characterizing the Relative Contributions of Large Vessels to Total Ocean Noise Fields: A Case Study Using the Gerry E. Studds Stellwagen Bank National Marine Sanctuary , 2008, Environmental management.

[60]  Tarchi Dario,et al.  Anomaly detection and knowledge discovery using Vessel Tracking Data , 2016 .

[61]  Virginia Fernandez Arguedas,et al.  Automatic generation of geographical networks for maritime traffic surveillance , 2014, 17th International Conference on Information Fusion (FUSION).

[62]  Laurie Goldsworthy,et al.  Modelling of ship engine exhaust emissions in ports and extensive coastal waters based on terrestrial AIS data - An Australian case study , 2015, Environ. Model. Softw..

[63]  Sheng-Long Kao,et al.  A Fuzzy Logic Method for Collision Avoidance in Vessel Traffic Service , 2007 .

[64]  Jean Roy,et al.  Anomaly detection in the maritime domain , 2008, SPIE Defense + Commercial Sensing.

[65]  Göran Falkman,et al.  The role of visualization and interaction in maritime anomaly detection , 2011, Electronic Imaging.

[66]  Avita Katal,et al.  Big data: Issues, challenges, tools and Good practices , 2013, 2013 Sixth International Conference on Contemporary Computing (IC3).

[67]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[68]  Leonardo Vanneschi,et al.  Improving Maritime Awareness with Semantic Genetic Programming and Linear Scaling: Prediction of Vessels Position Based on AIS Data , 2015, EvoApplications.

[69]  Alexis K.H. Lau,et al.  Policy change driven by an AIS-assisted marine emission inventory in Hong Kong and the Pearl River Delta , 2013 .

[70]  Gudrun Høye,et al.  Maritime traffic monitoring using a space-based AIS receiver , 2006 .

[71]  Dieter Fensel,et al.  Knowledge Engineering: Principles and Methods , 1998, Data Knowl. Eng..

[72]  Alain Bouju,et al.  DeAIS project: Detection of AIS spoofing and resulting risks , 2015, OCEANS 2015 - Genova.

[73]  Stan Matwin,et al.  Identifying fishing activities from AIS data with Conditional Random Fields , 2016, 2016 Federated Conference on Computer Science and Information Systems (FedCSIS).

[74]  R Shepherd,et al.  What determines trust in information about food-related risks? Underlying psychological constructs. , 1996, Risk analysis : an official publication of the Society for Risk Analysis.

[75]  Olivier Parvillers SERVICE HYDROGRAPHIQUE ET OCÉANOGRAPHIQUE DE LA MARINE , 2011 .

[76]  Chengfeng Wang,et al.  Estimation of exhaust emission from ocean-going vessels in Hong Kong. , 2012, The Science of the total environment.

[77]  Kaj Riska,et al.  A system for route optimization in ice-covered waters , 2009 .

[78]  Leslie Pearson,et al.  Vessels, risks, and rules: Planning for safe shipping in Bering Strait , 2015 .

[79]  Stuart E. Madnick,et al.  Improving data quality through effective use of data semantics , 2006, Data Knowl. Eng..

[80]  Paweł Banyś,et al.  Improving the Maritime Traffic Situation Assessment for a Single Target in a Multisensor Environment , 2016 .

[81]  H. Ligteringen,et al.  Study on collision avoidance in busy waterways by using AIS data , 2010 .

[82]  Krzysztof Naus,et al.  Usage AIS Data for Analyzing Ship's Motion Intensity , 2007 .

[83]  Marie-Odette St-Hilaire Determining the Consistency of Information between Multiple Systems Used in Maritime Domain Awareness , 2010 .

[84]  Wil M. P. van der Aalst,et al.  Analyzing Vessel Behavior Using Process Mining , 2013, Situation Awareness with Systems of Systems.

[85]  Ming-Cheng Tsou,et al.  THE STUDY OF SHIP COLLISION AVOIDANCE ROUTE PLANNING BY ANT COLONY ALGORITHM , 2010 .

[86]  Ting Wang,et al.  A COMPARATIVE STUDY OF COHERENCE, MUTUAL INFORMATION AND CROSS-INTENSITY MODELS , 2010 .

[87]  A. Goshtasby Similarity and Dissimilarity Measures , 2012 .

[88]  Andrea Munari,et al.  Analysis of capture and multi-packet reception on the AIS satellite system , 2015, OCEANS 2015 - Genova.

[89]  Paolo Braca,et al.  Detection of malicious AIS position spoofing by exploiting radar information , 2013, Proceedings of the 16th International Conference on Information Fusion.

[90]  Chih-Yung Cheng,et al.  Fuzzy Decision on Optimal Collision Avoidance Measures for Ships in Vessel Traffic Service , 2012 .

[91]  Aldo Napoli,et al.  Methodology for Real-Time Detection of AIS Falsification , 2016 .

[92]  Cyril Ray,et al.  Continuous detection of black holes for moving objects at sea , 2016, IWGS@SIGSPATIAL.

[93]  Fernandez Arguedas Virginia,et al.  Unsupervised Maritime Pattern Analysis to Enhance Contextual Awareness , 2014 .

[94]  Jakub Montewka,et al.  A method for detecting possible near miss ship collisions from AIS data , 2015 .

[95]  Catherine Roussey,et al.  Representations of Topological Relations Between Simple Regions in Description Logics: From Formalization to Consistency Checking , 2013, Int. J. Agric. Environ. Inf. Syst..

[96]  Stefano Spaccapietra,et al.  Trajectory Ontologies and Queries , 2008 .

[97]  Aldo Napoli,et al.  Détection de messages falsifiés de localisation de navires , 2016, EGC.

[98]  Simon Plass,et al.  Study on worldwide detection of AIS signals via airliners , 2014, OCEANS 2014 - TAIPEI.

[99]  Craig W. Fisher,et al.  Criticality of data quality as exemplified in two disasters , 2001, Inf. Manag..

[100]  Cheng Tao,et al.  Data Driven Identification of Migrant Vessels at Sea , 2016 .

[101]  Mark McIntyre,et al.  The Implications of Self-Reporting Systems for Maritime Domain Awareness , 2006 .

[102]  Carola Eschenbach,et al.  Formal Ontology in Information Systems , 2008 .

[103]  Seref Sagiroglu,et al.  Big data: A review , 2013, 2013 International Conference on Collaboration Technologies and Systems (CTS).

[104]  Fabio Mazzarella,et al.  Discovering vessel activities at sea using AIS data: Mapping of fishing footprints , 2014, 17th International Conference on Information Fusion (FUSION).

[105]  Christian S. Jensen,et al.  Efficient Vessel Tracking with Accuracy Guarantees , 2008, W2GIS.

[106]  Brian Sullivan,et al.  Ending hide and seek at sea , 2016, Science.

[107]  Michael Georgiopoulos,et al.  Non-derivable itemsets for fast outlier detection in large high-dimensional categorical data , 2011, Knowledge and Information Systems.

[108]  Aldo Napoli,et al.  On the Interest of Data Mining for an Integrity Assessment of AIS Messages , 2016, 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).

[109]  Basil A. Karádais Atomicity, coherence of information, and point-free structures , 2016, Ann. Pure Appl. Log..

[110]  Olivier Berder,et al.  Inter-channel interference rejection for maritime AIS system , 2005 .

[111]  刘江雪,et al.  LIN volume 11 issue 2 Cover and Back matter , 1975, Journal of Linguistics.

[112]  Anne-Laure Jousselme,et al.  Dissecting uncertainty-based fusion techniques for maritime anomaly detection , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[113]  Alexander O. MacGillivray,et al.  Mapping cumulative noise from shipping to inform marine spatial planning. , 2012, The Journal of the Acoustical Society of America.

[114]  Tom Ziemke,et al.  VISAD: an interactive and visual analytical tool for the detection of behavioral anomalies in maritime traffic data , 2009, Defense + Commercial Sensing.

[115]  Markus Lundkvist,et al.  Automatic Identification System (AIS) and Risk-Based Planning of Hydrographic Surveys in Swedish Waters , 2008 .

[116]  Hubert Fondin La Science de l'information ou le poids de l'histoire , 2005 .

[117]  Harm Greidanus,et al.  The declining impact of piracy on maritime transport in the Indian Ocean: Statistical analysis of 5-year vessel tracking data , 2015 .

[118]  Marc Gervais,et al.  Pertinence d'un manuel d'instructions au sein d'une stratégie de gestion du risque juridique découlant de la fourniture de données géographiques numériques , 2003 .

[119]  Ljupko Šimunović,et al.  Automatic Identification System in Maritime Traffic and Error , 2012 .

[120]  Jakub Montewka,et al.  Probability modelling of vessel collisions , 2010, Reliab. Eng. Syst. Saf..

[121]  J. Chiou,et al.  How Much can you Trust Online Information? Cues for Perceived Trustworthiness of Consumer-generated Online Information , 2011 .

[122]  B.J. Tetreault,et al.  Use of the Automatic Identification System (AIS) for maritime domain awareness (MDA) , 2005, Proceedings of OCEANS 2005 MTS/IEEE.

[123]  Serge P. Hoogendoorn,et al.  AIS data analysis for vessel behavior during strong currents and during encounters in the Botlek area in the Port of Rotterdam , 2013 .

[125]  Floris Goerlandt,et al.  Traffic simulation based ship collision probability modeling , 2011, Reliab. Eng. Syst. Saf..

[126]  H. Ligteringen,et al.  Comparison study on AIS data of ship traffic behavior , 2015 .

[127]  Feng Lu,et al.  A quantitative approach for delineating principal fairways of ship passages through a strait , 2015 .

[128]  Li Liping,et al.  Analysis and Simulation of Slot Collision and Reception Performance of AIS , 2012 .

[129]  Clément Iphar,et al.  Integrity Assessment of a Worldwide Maritime Tracking System for a Geospatial Analysis at Sea , 2017 .

[130]  Fabrizio Natale,et al.  Mapping Fishing Effort through AIS Data , 2015, PloS one.

[131]  Stan Matwin,et al.  Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning , 2016, PloS one.

[132]  Fabio Mazzarella,et al.  SAR Ship Detection and Self-Reporting Data Fusion Based on Traffic Knowledge , 2015, IEEE Geoscience and Remote Sensing Letters.

[133]  J. Kukkonen,et al.  Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide , 2011 .

[134]  Frank Drewnick,et al.  Interactive comment on “Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany” by J.-M. Diesch et al , 2013 .

[135]  Hugo Nguyen,et al.  Constellation of small quick-launch and self-deorbiting nano-satellites with AIS receivers for global ship traffic monitoring , 2011 .

[136]  Morten Winther,et al.  Emission inventories for ships in the arctic based on satellite sampled AIS data , 2013 .

[137]  Sara M Denize,et al.  Concerning trust and information , 2007 .

[138]  Aldo Napoli,et al.  Surveillance et contrôle des activités des navires en mer , 2008 .

[139]  Richard L. Shelmerdine,et al.  Teasing out the detail: How our understanding of marine AIS data can better inform industries, developments, and planning , 2015 .

[140]  Michele Vespe,et al.  Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction , 2013, Entropy.

[141]  Van Wimersma Greidanus Herman,et al.  Data Fusion for Wide-Area Maritime Surveillance , 2013 .

[142]  Paolo Braca,et al.  Long-term vessel kinematics prediction exploiting mean-reverting processes , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[143]  Cyril Ray,et al.  Methodology for AIS signature identification through magnitude and temporal characterization , 2016, OCEANS 2016 - Shanghai.

[144]  Diane M. Strong,et al.  Beyond Accuracy: What Data Quality Means to Data Consumers , 1996, J. Manag. Inf. Syst..

[145]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[146]  Yannis Theodoridis,et al.  Maritime data integration and analysis: recent progress and research challenges , 2017, EDBT.

[147]  Paolo Braca,et al.  Context-enhanced vessel prediction based on Ornstein-Uhlenbeck processes using historical AIS traffic patterns: Real-world experimental results , 2014, 17th International Conference on Information Fusion (FUSION).

[148]  Matteo Berioli,et al.  On the characterization of AIS traffic at the satellite , 2014, OCEANS 2014 - TAIPEI.

[149]  Li Suyi,et al.  Ship collision risk assessment for the Singapore Strait. , 2011, Accident; analysis and prevention.

[150]  Iain P A Stitt,et al.  AIS and Collision Avoidance – a Sense of Déjà Vu , 2004, Journal of navigation.

[151]  Gudrun Høye,et al.  Space-based AIS for global maritime traffic monitoring , 2008 .

[152]  Luca Cazzanti,et al.  Scalable and Distributed Sea Port Operational Areas Estimation from AIS Data , 2016, 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).

[153]  Thomas Devogele,et al.  Spatio-temporal trajectory analysis of mobile objects following the same itinerary , 2010 .

[154]  Ribana Roscher,et al.  Statistical Inference, Learning and Models in Big Data , 2015, ArXiv.

[155]  J. Hildebrand,et al.  Underwater radiated noise from modern commercial ships. , 2012, The Journal of the Acoustical Society of America.

[156]  Su Song,et al.  Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port , 2014 .

[157]  C. Erbe,et al.  Identifying Modeled Ship Noise Hotspots for Marine Mammals of Canada's Pacific Region , 2014, PloS one.

[158]  Van Wimersma Greidanus Herman,et al.  Data Driven Contextual Knowledge from and for Maritime Situational Awareness , 2014 .

[159]  Enrico Pirotta,et al.  Monitoring ship noise to assess the impact of coastal developments on marine mammals. , 2014, Marine pollution bulletin.

[160]  Robert Mills,et al.  ADS-B encryption: confidentiality in the friendly skies , 2013, CSIIRW '13.

[161]  Richard Y. Wang,et al.  Toward quality data: An attribute-based approach , 2014, Decis. Support Syst..

[162]  Wan Fokkink,et al.  Assessing Trust for Determining the Reliability of Information , 2013, Situation Awareness with Systems of Systems.

[163]  Zheng Bin,et al.  Data Analysis of Vessel Traffic Flow Using Clustering Algorithms , 2008, 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA).

[164]  Sergey Voinov,et al.  Automated Processing System for SAR Target Detection and Identification in Near Real Time Applications For Maritime Situational Awareness. , 2015 .

[165]  Torgeir Moan,et al.  Combined maneuvering analysis, AIS and full-mission simulation , 2007 .

[166]  Erik Brynjolfsson,et al.  Big data: the management revolution. , 2012, Harvard business review.

[167]  Jean Roy,et al.  Exploitation of maritime domain ontologies for anomaly detection and threat analysis , 2010, 2010 International WaterSide Security Conference.

[168]  The development of ships' routeing measures in the Bering Strait: Lessons learned from the North Atlantic right whale to protect local whale populations , 2014 .

[169]  Jignesh M. Patel,et al.  Big data and its technical challenges , 2014, CACM.

[170]  Marco Balduzzi,et al.  A security evaluation of AIS automated identification system , 2014, ACSAC.

[171]  A. Ginesi,et al.  On the performance analysis of a satellite-based AIS system , 2008, 2008 10th International Workshop on Signal Processing for Space Communications.

[172]  Salma Zouaoui-Elloumi Reconnaissance de comportements de navires dans une zone portuaire sensible par approches probabiliste et événementielle : application au Grand Port Maritime de Marseille , 2012 .

[173]  Aldo Napoli,et al.  Risk Analysis of falsified Automatic Identification System for the improvement of maritime traffic safety , 2017 .

[174]  Martin Hepp,et al.  Ontologies: State of the Art, Business Potential, and Grand Challenges , 2008, Ontology Management.

[175]  Ronald Pelot,et al.  Making sense of Arctic maritime traffic using the Polar Operational Limits Assessment Risk Indexing System (POLARIS) , 2016 .

[176]  Nathan D. Merchant,et al.  Assessing sound exposure from shipping in coastal waters using a single hydrophone and Automatic Identification System (AIS) data. , 2012, Marine Pollution Bulletin.

[177]  X. Qu,et al.  Vessel Collision Frequency Estimation in the Singapore Strait , 2012 .

[178]  Morten Hertzum,et al.  Trust in information sources: seeking information from people, documents, and virtual agents , 2002, Interact. Comput..

[179]  Stephan Hartmann,et al.  A Probabilistic Theory of the Coherence of an Information Set , 2001 .

[180]  Fabio Mazzarella,et al.  Knowledge-based vessel position prediction using historical AIS data , 2015, 2015 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[181]  Masayoshi Numano,et al.  Simulation Study on Sea Traffic Control at an Intersection Utilizing Information Sharing with Automatic Identification System (AIS) , 2002 .

[182]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[183]  Armin Dammann,et al.  Global Maritime Surveillance by Airliner-Based AIS Detection: Preliminary Analysis , 2015 .

[184]  Stojan Petelin,et al.  Nautical Risk Assessment for LNG Operations at the Port of Koper , 2012 .

[185]  Anany Levitin,et al.  The Notion of Data and Its Quality Dimensions , 1994, Inf. Process. Manag..