On the relations computable by a class of concurrent automata

We consider <italic>monotone input/output automata</italic>, which model a usefully large class of dataflow networks of indeterminate (or nonfunctional) processes. We obtain a characterization of the relations computable by these automata, which states that a relation <italic>R</italic> : <italic>X</italic> → 2<supscrpt><italic>Y</italic></supscrpt> (viewed as a “nondeterministic function”) is the input/output relation of an automaton iff there exists a certain kind of Scott domain <italic>D</italic>, a continuous function <italic>F</italic> : <italic>X</italic> → [<italic>D</italic> → <italic>Y</italic>] and a continuous function <italic>G</italic> : <italic>X</italic> → <italic>P</italic>(<italic>D</italic>), such that <italic>R</italic>(æ) = <italic>F</italic>(æ)<supscrpt>†</supscrpt>(<italic>G</italic>(æ)) for all inputs æ ε <italic>X</italic>. Here <italic>P</italic> denotes a certain powerdomain operator, and † denotes the pointwise extension to the powerdomain of a function on the underlying domain. An attractive feature of this result is that it specializes to two subclasses of automata, <italic>determinate</italic> automata, for which <italic>G</italic> is single-valued, and <italic>semi-determinate</italic> automata, for which <italic>G</italic> is a constant function. A corollary of the latter result is the impossibility of implementing “angelic merge” by a network of determinate processes and “infinity-fair merge” processes.

[1]  Prakash Panangaden,et al.  On the Expressive Power of Indeterminate Network Primitives , 1987 .

[2]  Antoni W. Mazurkiewicz,et al.  Trace Theory , 1986, Advances in Petri Nets.

[3]  Eugene W. Stark,et al.  Compostional Relational Semantics for Indeterminate Dataflow Networks , 1989, Category Theory and Computer Science.

[4]  Gilles Kahn,et al.  Coroutines and Networks of Parallel Processes , 1977, IFIP Congress.

[5]  NetworksEugene W. Stark Compositional Relational Semantics for Indeterminate Dataaow Networks , 1989 .

[6]  Marek Antoni Bednarczyk,et al.  Categories of asynchronous systems , 1987 .

[7]  William B. Ackerman,et al.  Scenarios: A Model of Non-Determinate Computation , 1981, ICFPC.

[8]  Prakash Panangaden,et al.  Computations, Residuals, and the POwer of Indeterminancy , 1988, ICALP.

[9]  Gilles Kahn,et al.  The Semantics of a Simple Language for Parallel Programming , 1974, IFIP Congress.

[10]  Antony A. Faustini An Operational Semantics for Pure Dataflow , 1982, ICALP.

[11]  Manfred Broy,et al.  Nondeterministic Data Flow Programs: How to Avoid the Merge Anomaly , 1988, Sci. Comput. Program..

[12]  M. W. Shields Deterministic asynchronous automata , 1984, Automata on Infinite Words.

[13]  Nancy A. Lynch,et al.  Hierarchical correctness proofs for distributed algorithms , 1987, PODC '87.

[14]  Eugene W. Stark,et al.  Concurrent transition system semantics of process networks , 1987, POPL '87.

[15]  Eugene W. Stark Connections between a Concrete and an Abstract Model of Concurrent Systems , 1989, Mathematical Foundations of Programming Semantics.

[16]  Dana S. Scott,et al.  Lectures on a Mathematical Theory of Computation , 1982 .

[17]  David A. Schmidt Denotational Semantics: A Methodology for Language Development by Phil , 1987 .

[18]  Glynn Winskel,et al.  Events in computation , 1980 .

[19]  Grzegorz Rozenberg,et al.  Theory of Traces , 1988, Theor. Comput. Sci..

[20]  Eugene W. Stark,et al.  Concurrent Transition Systems , 1989, Theor. Comput. Sci..

[21]  Nancy A. Lynch,et al.  A Proof of the Kahn Principle for Input/Output Automata , 1989, Inf. Comput..