Embedding physics domain knowledge into a Bayesian network enables layer-by-layer process innovation for photovoltaics

[1]  Brian L. DeCost,et al.  Accelerated Development of Perovskite-Inspired Materials via High-Throughput Synthesis and Machine-Learning Diagnosis , 2018, Joule.

[2]  Christoph J. Brabec,et al.  Physics-guided characterization and optimization of solar cells using surrogate machine learning model , 2019, 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC).

[3]  Reiner Sebastian Sprick,et al.  Accelerated Discovery of Organic Polymer Photocatalysts for Hydrogen Evolution from Water through the Integration of Experiment and Theory , 2019, Journal of the American Chemical Society.

[4]  S. Ong Accelerating materials science with high-throughput computations and machine learning , 2019, Computational Materials Science.

[5]  Jun Ji,et al.  Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3% , 2019, Nature Energy.

[6]  Jun Ye,et al.  Machine learning enables polymer cloud-point engineering via inverse design , 2018, npj Computational Materials.

[7]  Savitha Ramasamy,et al.  Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks , 2018, npj Computational Materials.

[8]  Giuseppe Romano,et al.  Bayesim: A tool for adaptive grid model fitting with Bayesian inference , 2018, Comput. Phys. Commun..

[9]  Chandni Akbar,et al.  Physics-Prior Bayesian Neural Networks in Semiconductor Processing , 2019, IEEE Access.

[10]  C. S. Tan,et al.  Ultra-Thin GaAs Double-Junction Solar Cell With Carbon-Doped Emitter , 2018, IEEE Journal of Photovoltaics.

[11]  Alán Aspuru-Guzik,et al.  Phoenics: A Bayesian Optimizer for Chemistry , 2018, ACS central science.

[12]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[13]  Lawrence A. Adutwum,et al.  How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. , 2018, ACS nano.

[14]  Peter I. Frazier,et al.  A Tutorial on Bayesian Optimization , 2018, ArXiv.

[15]  Junichiro Shiomi,et al.  Multifunctional structural design of graphene thermoelectrics by Bayesian optimization , 2018, Science Advances.

[16]  Alán Aspuru-Guzik,et al.  Accelerating the discovery of materials for clean energy in the era of smart automation , 2018, Nature Reviews Materials.

[17]  Y. Nakano,et al.  Extremely High-Speed GaAs Growth by MOVPE for Low-Cost PV Application , 2018, IEEE Journal of Photovoltaics.

[18]  Christopher Wolverton,et al.  Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments , 2018, Science Advances.

[19]  Tonio Buonassisi,et al.  Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing , 2018, Joule.

[20]  T. Lookman,et al.  Accelerated Discovery of Large Electrostrains in BaTiO3‐Based Piezoelectrics Using Active Learning , 2018, Advanced materials.

[21]  M. Fuhrer,et al.  Solcore: a multi-scale, Python-based library for modelling solar cells and semiconductor materials , 2017, 1709.06741.

[22]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[23]  Gerbrand Ceder,et al.  Rapid Photovoltaic Device Characterization through Bayesian Parameter Estimation , 2017 .

[24]  Fahhad H. Alharbi,et al.  Full space device optimization for solar cells , 2017, Scientific Reports.

[25]  Christopher. Simons,et al.  Machine learning with Python , 2017 .

[26]  R. Walters,et al.  Effect of Growth Temperature on GaAs Solar Cells at High MOCVD Growth Rates , 2017, IEEE Journal of Photovoltaics.

[27]  Xiaoning Qian,et al.  Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning , 2016, Proceedings of the National Academy of Sciences.

[28]  Edward O. Pyzer-Knapp,et al.  Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery , 2015 .

[29]  Haohui Liu,et al.  Numerical Analysis of Radiative Recombination and Reabsorption in GaAs/Si Tandem , 2015, IEEE Journal of Photovoltaics.

[30]  Jeremy R. Poindexter,et al.  A path to 10% efficiency for tin sulfide devices , 2014, 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

[31]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[32]  Halvard Haug,et al.  A Graphical User Interface for Multivariable Analysis of Silicon Solar Cells Using Scripted PC1D Simulations , 2013 .

[33]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[34]  Isik C. Kizilyalli,et al.  27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[35]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[36]  Qiang Huang,et al.  Physics-driven Bayesian hierarchical modeling of the nanowire growth process at each scale , 2010 .

[37]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[38]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[39]  Matthias Morzfeld,et al.  Communications in Applied Mathematics and Computational Science , 2010 .

[40]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[41]  An experimental and computational analysis of a MOCVD process for the growth of Al films using DMEAA , 2007 .

[42]  David J. Earl,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[43]  Paul P. Wang,et al.  Advances to Bayesian network inference for generating causal networks from observational biological data , 2004, Bioinform..

[44]  M. Coltrin,et al.  Mass transport and kinetic limitations in MOCVD selective-area growth , 2003 .

[45]  Leonie Kohl,et al.  Fundamental Concepts in the Design of Experiments , 2000 .

[46]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[47]  S. Gillis,et al.  A user program for realistic simulation of polycrystalline heterojunction solar cells: SCAPS-1D , 1998 .

[48]  M. Hudait,et al.  Zn incorporation and band gap shrinkage in p-type GaAs , 1997 .

[49]  D. A. Clugston,et al.  PC1D version 5: 32-bit solar cell modeling on personal computers , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[50]  P. Lenk,et al.  Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs , 1996 .

[51]  K. Laidler A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996) , 1996 .

[52]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[53]  T. Takamoto,et al.  17% efficient InGaP/GaAs solar cells by improved minority carrier lifetime , 1994, Proceedings of 1994 IEEE 6th International Conference on Indium Phosphide and Related Materials (IPRM).

[54]  N. Jokerst,et al.  Base doping optimization for radiation-hard Si, GaAs, and InP solar cells , 1992 .

[55]  Michael R. Melloch,et al.  A study of minority carrier lifetime versus doping concentration in n‐type GaAs grown by metalorganic chemical vapor deposition , 1992 .

[56]  E. Armour,et al.  Zinc and tellurium doping in GaAs and AlxGa1−xAs grown by MOCVD , 1991 .

[57]  Richard K. Ahrenkiel,et al.  INTENSITY-DEPENDENT MINORITY-CARRIER LIFETIME IN III-V SEMICONDUCTORS DUE TO SATURATION OF RECOMBINATION CENTERS , 1991 .

[58]  M. S. Skolnick,et al.  Effect of growth temperature on the optical, electrical and crystallographic properties of epitaxial indium gallium arsenide grown by MOCVD in an atmospheric pressure reactor , 1986 .

[59]  B. Meyerson,et al.  Silicon doping of GaAs and AlxGa1−xAs using disilane in metalorganic chemical vapor deposition , 1984 .

[60]  K. Laidler The development of the Arrhenius equation , 1984 .

[61]  David E. Aspnes,et al.  RECOMBINATION AT SEMICONDUCTOR SURFACES AND INTERFACES , 1983 .

[62]  H. Petty,et al.  Methods to determine the temperature dependence of the pre-exponential factor of the Arrhenius equation from thermogravimetric data , 1977 .

[63]  C. Ireland Fundamental concepts in the design of experiments , 1964 .