Slow-light enhancement of Beer-Lambert-Bouguer absorption

The authors theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption measurements widely employed in analytical chemistry.

[1]  D. Skoog Fundamentals of analytical chemistry , 1963 .

[2]  Michael Scalora,et al.  The photonic band edge laser: A new approach to gain enhancement , 1994 .

[3]  Distribution of the reflection eigenvalues of a weakly absorbing chaotic cavity , 1999, cond-mat/9908325.

[4]  Andrew G. Glen,et al.  APPL , 2001 .

[5]  Steven G. Johnson,et al.  Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. , 2001, Optics express.

[6]  E. Verpoorte Chip vision-optics for microchips. , 2003, Lab on a chip.

[7]  K. Mogensen,et al.  Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems. , 2003, Applied optics.

[8]  Willem L. Vos,et al.  Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals , 2004, Nature.

[9]  J. D. Joannopoulos,et al.  Enhancement of nonlinear effects using photonic crystals , 2004, Nature materials.

[10]  E. Chow,et al.  Ultra compact biochemical sensor built with two dimensional photonic crystal microcavity , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[11]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[12]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[13]  David S. Citrin,et al.  Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region , 2005 .

[14]  D. Psaltis,et al.  Nanofluidic tuning of photonic crystal circuits , 2006 .

[15]  Susumu Noda,et al.  Seeking the Ultimate Nanolaser , 2006, Science.

[16]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[17]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[18]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[19]  M. Koch,et al.  Photonic crystals for fluid sensing in the subterahertz range , 2006 .

[20]  Andreas Manz,et al.  Scaling and the design of miniaturized chemical-analysis systems , 2006, Nature.

[21]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .