An analysis of the behavior of simplified evolutionary algorithms on trap functions

Methods are developed to numerically analyze an evolutionary algorithm (EA) that applies mutation and selection on a bit-string representation to find the optimum for a bimodal unitation function called a trap function. This research bridges part of the gap between the existing convergence velocity analysis of strictly unimodal functions and global convergence results assuming the limit of infinite time. As a main result of this analysis, a new so-called (1 : /spl lambda/)-EA is proposed, which generates offspring using individual mutation rates p/sub i/. While a more traditional EA using only one mutation rate is not able to find the global optimum of the trap function within an acceptable (nonexponential) time, our numerical investigations provide evidence that the new algorithm overcomes these limitations. The analysis tools used for the analysis, based on absorbing Markov chains and the calculation of transition probabilities, are demonstrated to provide an intuitive and useful method for investigating the capabilities of EAs to bridge the gap between a local and a global optimum in bimodal search spaces.

[1]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[2]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[3]  Bruno Buchberger,et al.  Mathematik für Informatiker I: Die Methode der Mathematik , 1980, Informatik-Fachberichte.

[4]  A. E. Eiben,et al.  Global conver-gence of genetic algorithms: an infinite Markov chain analysis , 1991 .

[5]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[6]  Kalyanmoy Deb,et al.  Analyzing Deception in Trap Functions , 1992, FOGA.

[7]  Heinz Mühlenbein,et al.  How Genetic Algorithms Really Work: Mutation and Hillclimbing , 1992, PPSN.

[8]  Thomas Bäck,et al.  Optimal Mutation Rates in Genetic Search , 1993, ICGA.

[9]  Thomas Bäck,et al.  Order Statistics for Convergence Velocity Analysis of Simplified Evolutionary Algorithms , 1994, FOGA.

[10]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[11]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[12]  L. Kallel,et al.  Theoretical Aspects of Evolutionary Computing , 2001, Natural Computing Series.

[13]  Hans-Georg Beyer,et al.  Theory of evolution strategies - a tutorial , 2001 .

[14]  A. Rogers,et al.  A solvable model of a hard optimisation problem , 2001 .

[15]  Thomas Jansen,et al.  The Analysis of Evolutionary Algorithms—A Proof That Crossover Really Can Help , 2002, Algorithmica.

[16]  R. Galar,et al.  Handicapped individua in evolutionary processes , 1985, Biological Cybernetics.

[17]  R. Galar,et al.  Evolutionary search with soft selection , 1989, Biological Cybernetics.

[18]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .