Properties improvement of fly ash cenosphere modified cement pastes using nano silica

[1]  Zeyu Lu,et al.  Utilization of fly ash cenosphere as lightweight filler in cement-based composites – A review , 2017 .

[2]  P. Mendis,et al.  Investigation of strength and hydration characteristics in nano-silica incorporated cement paste , 2017 .

[3]  Zeyu Lu,et al.  Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers , 2017 .

[4]  Zongjin Li,et al.  Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites , 2017 .

[5]  A. Inozemtcev,et al.  Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high‐strength lightweight concrete , 2017 .

[6]  Mohd Zamin Jumaat,et al.  Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash , 2016 .

[7]  Zeyu Lu,et al.  Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres – Mechanical and thermal insulating properties , 2016 .

[8]  E. Huseynov,et al.  TEM and SEM study of nano SiO2 particles exposed to influence of neutron flux , 2016 .

[9]  Christopher C. Ferraro,et al.  A review of waste products utilized as supplements to Portland cement in concrete , 2016 .

[10]  M. Stefanidou,et al.  Microstructure of lime and lime-pozzolana pastes with nanosilica , 2016 .

[11]  S. Setunge,et al.  High volume fly ash cement composite modified with nano silica, hydrated lime and set accelerator , 2016 .

[12]  Maria S. Konsta-Gdoutos,et al.  Nano-modification of cementitious material: toward a stronger and durable concrete , 2016 .

[13]  Luís Bragança,et al.  Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material , 2016 .

[14]  S. Setunge,et al.  Micro and Nano Engineered High Volume Ultrafine Fly Ash Cement Composite with and without Additives , 2016 .

[15]  Karen L. Scrivener,et al.  A Practical Guide to Microstructural Analysis of Cementitious Materials , 2015 .

[16]  Rafat Siddique,et al.  Properties of concrete containing high volumes of coal bottom ash as fine aggregate , 2015 .

[17]  R. Philip,et al.  Cubic to amorphous transformation of Se in silica with improved ultrafast optical nonlinearity , 2015 .

[18]  Alaa M. Rashad,et al.  An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads , 2015 .

[19]  Eduardo Júlio,et al.  The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete , 2014 .

[20]  H. Brouwers,et al.  A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA) , 2014 .

[21]  Tomasz Ponikiewski,et al.  The influence of high-calcium fly ash on the properties of fresh and hardened self-compacting concrete and high performance self-compacting concrete , 2014 .

[22]  Hongyan Ma,et al.  Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure parameter acquisition and application , 2014, Journal of Porous Materials.

[23]  M. Taha,et al.  Strength and Microstructure of Mortar Containing Nanosilica at High Temperature , 2014 .

[24]  T. Pulngern,et al.  Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2 , 2014 .

[25]  S. Aleem,et al.  Characteristics of blended cements containing nano-silica , 2013 .

[26]  L. Singh,et al.  Beneficial role of nanosilica in cement based materials – A review , 2013 .

[27]  Xudong Chen,et al.  Influence of porosity on compressive and tensile strength of cement mortar , 2013 .

[28]  M. Schmidt,et al.  Nanotechnological improvement of structural materials – Impact on material performance and structural design , 2013 .

[29]  Surendra P. Shah,et al.  Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials , 2012 .

[30]  Hesam Madani,et al.  The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement , 2012 .

[31]  M. Berra,et al.  Effects of nanosilica addition on workability and compressive strength of Portland cement pastes , 2012 .

[32]  Ioanna Papayianni,et al.  Influence of nano-SiO2 on the Portland cement pastes , 2012 .

[33]  Jahidul Islam,et al.  Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag , 2012 .

[34]  Min-hong Zhang,et al.  Stability of cenospheres in lightweight cement composites in terms of alkali–silica reaction , 2012 .

[35]  M. Peltz,et al.  Thermal properties of high-volume fly ash mortars and concretes , 2011 .

[36]  Florence Sanchez,et al.  Nanotechnology in concrete – A review , 2010 .

[37]  Jamal M. Khatib,et al.  Abrasion resistance and mechanical properties of high-volume fly ash concrete , 2010 .

[38]  I. Manna,et al.  Preparation and Characterization of Nano structured Materials from Fly Ash: A Waste from Thermal Power Stations, by High Energy Ball Milling , 2007, Nanoscale Research Letters.

[39]  Jeffrey J. Thomas,et al.  Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.

[40]  Ta-Peng Chang,et al.  Effect of nanosilica on characterization of Portland cement composite , 2006 .

[41]  Tao Ji,et al.  Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2 , 2005 .

[42]  Ángel Palomo,et al.  Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator , 2005 .

[43]  K. Aligizaki Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirements , 2005 .

[44]  Jeffrey J. Thomas,et al.  A DISCUSSION OF THE PAPER "THE BET-SPECIFIC SURFACE AREA OF HYDRATED PORTLAND CEMENT AND RELATED MATERIALS" BY IVAN ODLER , 2004 .

[45]  Gengying Li,et al.  Properties of high-volume fly ash concrete incorporating nano-SiO2 , 2004 .

[46]  R. Troli,et al.  "Optimization of Silica Fume, Fly Ash and Amorphous Nano-Silica in Superplasticized High-Performance Concrete" , 2004, "SP-221: Eighth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete".

[47]  I. Odler The BET-specific surface area of hydrated Portland cement and related materials , 2003 .

[48]  C. Atiş,et al.  Relation between abrasion resistance and flexural strength of high volume fly ash concrete , 2002 .

[49]  C. Poon,et al.  Degree of hydration and gel/space ratio of high-volume fly ash/cement systems , 2000 .

[50]  J. Monzó,et al.  Mechanical treatment of fly ashes: Part IV. Strength development of ground fly ash-cement mortars cured at different temperatures , 2000 .

[51]  T. Mingshu,et al.  ASR IN MORTAR BARS CONTAINING SILICA GLASS IN COMBINATION WITH HIGH ALKALI AND HIGH FLY ASH CONTENTS , 1999 .

[52]  J. Monzó,et al.  Mechanical treatments of fly ashes. Part III: Studies on strength development of ground fly ashes (GFA) — Cement mortars , 1997 .

[53]  J. Marchand,et al.  INFLUENCE OF CURING TEMPERATURE ON CEMENT HYDRATION AND MECHANICAL STRENGTH DEVELOPMENT OF FLY ASH MORTARS , 1997 .

[54]  Jeffrey J. Thomas,et al.  Effect of carbonation on the nitrogen BET surface area of hardened portland cement paste , 1996 .

[55]  Jeffrey J. Thomas,et al.  Deterioration of the nitrogen BET surface area of dried cement paste with storage time , 1996 .

[56]  Jordi Payá,et al.  Mechanical treatment of fly ashes part II: Particle morphologies in ground fly ashes (GFA) and workability of GFA-cement mortars , 1996 .

[57]  Jordi Payá,et al.  Mechanical treatment of fly ashes. Part I: Physico-chemical characterization of ground fly ashes , 1995 .

[58]  Min-Hong Zhang,et al.  HYDRATION IN HIGH-VOLUME FLY ASH CONCRETE BINDERS , 1994 .

[59]  S. Sarkar,et al.  Microstructural study of gypsum activated fly ash hydration in cement paste , 1991 .

[60]  Thompson,et al.  Quantitative prediction of permeability in porous rock. , 1986, Physical review. B, Condensed matter.

[61]  K. J. Reid,et al.  Use of thermal analysis in the hydration studies of a type 1 portland cement produced from mineral tailings , 1985 .

[62]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[63]  D. D. Theodorakopoulos,et al.  Early Strength Fly Ash Concrete for Structural Applications , 1983 .

[64]  K. Sing,et al.  Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional) , 1982 .

[65]  R. Iler Coagulation of Colloidal Silica by Calcium Ions, Mechanism, and Effect of Particle Size , 1975 .

[66]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[67]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[68]  E. W. Washburn Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Hjh Jos Brouwers,et al.  Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses , 2015 .

[70]  Surendra P. Shah,et al.  Effects of colloidal nanosilica on rheological and mechanical properties of fly ash–cement mortar , 2013 .

[71]  Hongyan Ma Multi-scale modeling of the microstructure and transport properties of contemporary concrete , 2013 .

[72]  A. Shamsai,et al.  Effect of Water-Cement Ratio on Abrasive Strength, Porosity and Permeability of Nano-Silica Concrete , 2012 .

[73]  G. Fagerlund Chemically bound water as measure of degree of hydration: method and potential errors , 2009 .

[74]  L. Torres-Martínez,et al.  Engineering of SiO 2 Nanoparticles for Optimal Performance in Nano Cement-Based Materials , 2009 .

[75]  H. Midgley The determination of calcium hydroxide in set Portland cements , 1979 .

[76]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .