The Naïve Conception

[1]  Peter Koellner,et al.  On reflection principles , 2009, Ann. Pure Appl. Log..

[2]  Ross T. Brady The Simple Consistency of Naive Set Theory using Metavaluations , 2014, J. Philos. Log..

[3]  Morgan Thomas Approximating Cartesian Closed Categories in NF-Style Set Theories , 2018, J. Philos. Log..

[4]  Hao Wang,et al.  A Formal System of Logic , 1950, J. Symb. Log..

[5]  Solomon Feferman,et al.  FOUNDATIONS OF UNLIMITED CATEGORY THEORY: WHAT REMAINS TO BE DONE , 2012, The Review of Symbolic Logic.

[6]  R. Cameron Turtles all the Way Down: Regress, Priority and Fundamentality , 2007 .

[7]  G. Uzquiano Modality and Paradox , 2015 .

[8]  Paul Bernays,et al.  On the Problem of Schemata of Infinity in Axiomatic Set Theory , 1976 .

[9]  Nick Thomas Expressive Limitations of naïve Set Theory in LP and minimally Inconsistent LP , 2014, Rev. Symb. Log..

[10]  Salvatore Florio Unrestricted Quantification: Unrestricted Quantification , 2014 .

[11]  Penelope Maddy,et al.  Believing the axioms. I , 1988, Journal of Symbolic Logic.

[12]  K. Fine XIV—Ontological Dependence , 1995 .

[13]  Vann McGee,et al.  How We Learn Mathematical Language , 1997 .

[14]  GABRIEL UZQUIANO,et al.  A NEGLECTED RESOLUTION OF RUSSELL’S PARADOX OF PROPOSITIONS , 2015, The Review of Symbolic Logic.

[15]  Kurt Gödel,et al.  What is Cantor's Continuum Problem? , 1947 .

[16]  Ross T. Brady,et al.  Depth relevance of some paraconsistent logics , 1984 .

[17]  A. Levy,et al.  Principles of partial reflection in the set theories of Zermelo and Ackermann , 1961 .

[18]  E. J. Lowe,et al.  What is a Criterion of Identity , 1989 .

[19]  Harvey M. Friedman,et al.  Higher set theory and mathematical practice , 1971 .

[20]  W. W. Tatt Godel's Unpublished Papers on Foundations of Mathematics , 2001 .

[21]  Luca Incurvati,et al.  ON ADOPTING KRIPKE SEMANTICS IN SET THEORY , 2008, The Review of Symbolic Logic.

[22]  Øystein Linnebo,et al.  Category theory as an autonomous foundation , 2011 .

[23]  Thomas E. Forster ZF + 'Every set is the same size as a wellfounded set' , 2003, J. Symb. Log..

[24]  Penelope Maddy,et al.  Defending the Axioms , 2011 .

[25]  Zach Weber,et al.  Extensionality and Restriction in Naive Set Theory , 2010, Stud Logica.

[26]  Christopher Menzel,et al.  Wide Sets, ZFCU, and the Iterative Conception , 2014 .

[27]  L. Incurvati,et al.  How to be a minimalist about sets , 2012 .

[28]  Donald L. M. Baxter Identity in the Loose and Popular Sense , 1988 .

[29]  Jonathan Lear Sets and Semantics , 1977 .

[30]  Federico De Marchi,et al.  Non-well-founded trees in categories , 2007, Ann. Pure Appl. Log..

[31]  W. Quine Reply to D. A. Martin , 1970 .

[32]  Colin McLarty Failure of Cartesian Closedness in NF , 1992, J. Symb. Log..

[33]  Jaegwon Kim Causation, Nomic Subsumption, and the Concept of Event , 1973 .

[34]  W. V. Quine,et al.  On Cantor's theorem , 1937, Journal of Symbolic Logic.

[35]  E. Lowe Sortals and the Individuation of Objects , 2007 .

[36]  Øystein Linnebo,et al.  Pluralities and sets , 2010 .

[37]  E. Specker The Axiom of Choice in Quine's New Foundations for Mathematical Logic. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[39]  Andrew Bacon,et al.  Non-classical Metatheory for Non-classical Logics , 2013, J. Philos. Log..

[40]  Carol E. Cleland On the individuation of events , 1991, Synthese.

[41]  Achille C. Varzi The Extensionality of Parthood and Composition , 2008 .

[42]  Aaron Cotnoir,et al.  Composition as Identity , 2014 .

[43]  Klaus Gloede,et al.  Reflection Principles and Indescrib Ability , 1976 .

[44]  P. Finsler,et al.  ber die Grundlegung der Mengenlehre: Erster Teil. Die Mengen und ihre Axiome , 1926 .

[45]  H. B. Curry The inconsistency of certain formal logics , 1942, Journal of Symbolic Logic.

[46]  L. Horsten Impredicative Identity Criteria , 2010 .

[47]  John P. Burgess,et al.  E Pluribus Unum: Plural Logic and Set Theory , 2004 .

[48]  G. Kreisel Informal Rigour and Completeness Proofs , 1967 .

[49]  Wilhelm Ackermann,et al.  Zur Axiomatik der Mengenlehre , 1956 .

[50]  Allen P. Hazen,et al.  Relevant Restricted Quantification , 2006, J. Philos. Log..

[51]  L. Incurvati,et al.  Maximally Consistent Sets of Instances of Naive Comprehension , 2017 .

[52]  Salvatore Florio,et al.  WHAT RUSSELL SHOULD HAVE SAID TO BURALI–FORTI , 2017, The Review of Symbolic Logic.

[53]  Zach Weber Transfinite numbers in Paraconsistent Set Theory , 2010, Rev. Symb. Log..

[54]  Donald A. Martin,et al.  Set Theory and Its Logic. , 1966 .

[55]  C. Ward Henson Type-Raising Operations on Cardinal and Ordinal Numbers in Quine's "New Foundations" , 1973, J. Symb. Log..

[56]  Keith Hossack,et al.  Sets and Plural Comprehension , 2014, J. Philos. Log..

[57]  Keith Devlin,et al.  The Joy of Sets , 1993 .

[58]  Gabriel Uzquiano,et al.  Well- and Non-Well-Founded Fregean Extensions , 2004, J. Philos. Log..

[59]  Colin McLarty Anti-foundation and self-reference , 1993, J. Philos. Log..

[60]  Thomas Schindler,et al.  Classes, why and how , 2019 .

[61]  James Ladyman,et al.  Does Homotopy Type Theory Provide a Foundation for Mathematics? , 2018, The British Journal for the Philosophy of Science.

[62]  Alex Oliver,et al.  Logic, Mathematics and Philosophy , 2000, The British Journal for the Philosophy of Science.

[63]  Stewart Shapiro,et al.  New V, ZF, and Abstraction , 1999 .

[64]  R. Trueman The concept horse with no name , 2015 .

[65]  Alexandru Baltag,et al.  STS: A Structural Theory of Sets , 1999, Log. J. IGPL.

[66]  Nino B. Cocchiarella,et al.  Conceptual realism versus Quine on classes and higher-order logic , 2004, Synthese.

[67]  J. Dunn,et al.  Curry's paradox , 1979 .

[68]  S. Pollard Plural quantification and the axiom of choice , 1988 .

[69]  Gabriel Uzquiano Models of second-order Zermelo set theory , 1999, Bull. Symb. Log..

[70]  Nino B. Cocchiarella,et al.  Frege's double correlation thesis and quine's set theories NF and ML , 1985, J. Philos. Log..

[71]  George Boolos,et al.  BASIC LAW (V) , 1993 .

[72]  Vann McGee,et al.  XIII—Two Problems with Tarski's Theory of Consequence , 1992 .

[73]  Alan Weir Naïve set theory, paraconsistency and indeterminacy: Part II , 1999 .

[74]  Greg Restall A Note on Naive Set Theory in LP , 1992, Notre Dame J. Formal Log..

[75]  Graham Priest,et al.  The logic of paradox , 1979, J. Philos. Log..

[76]  Joseph R. Shoenfield The axioms of set theory , 1977 .

[77]  Timothy Smiley,et al.  WHAT ARE SETS AND WHAT ARE THEY FOR , 2006 .

[78]  Penelope Maddy,et al.  Set theoretic naturalism , 1996, Journal of Symbolic Logic.

[79]  Aaron Cotnoir,et al.  Anti‐Symmetry and Non‐Extensional Mereology , 2010 .

[80]  A. R. D. Mathias Slim Models of Zermelo Set Theory , 2001, J. Symb. Log..

[81]  Gabriel Uzquiano,et al.  Toward a Theory of Second-Order Consequence , 1999, Notre Dame J. Formal Log..

[82]  Zach Weber Notes on Inconsistent Set Theory , 2013, Paraconsistency: Logic and Applications.

[83]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[84]  G. Boolos,et al.  The Iterative Conception of Set , 1971 .

[85]  Øystein Linnebo,et al.  Structuralism and the notion of dependence , 2007 .

[86]  Jan Rutten,et al.  On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces , 1998, Mathematical Structures in Computer Science.

[87]  Marcel Crabbé Reassurance for the Logic of Paradox , 2011, Rev. Symb. Log..

[88]  Graham Priest,et al.  Minimally inconsistent LP , 1991, Stud Logica.

[89]  Zach Weber Transfinite Cardinals in Paraconsistent Set Theory , 2012, Rev. Symb. Log..

[90]  Lieven Decock Trading Ontology for Ideology , 2002 .

[91]  Azriel Lévy AXIOM SCHEMATA OF STRONG INFINITY IN AXIOMATIC SET THEORY , 1960 .

[92]  M. Randall Holmes,et al.  Strong axioms of infinity in NFU , 2001, Journal of Symbolic Logic.

[93]  J. Barkley Rosser,et al.  The Burali-Forti paradox , 1942, Journal of Symbolic Logic.

[94]  E. Lowe One-level versus two-level identity criteria , 1991 .

[95]  Timothy Williamson,et al.  Never say never , 1994 .

[96]  Stewart Shapiro Foundations of Mathematics: Metaphysics, Epistemology, Structure , 2004 .

[97]  Willard Van Orman Quine,et al.  New Foundations for Mathematical Logic , 1937 .

[98]  Hao Wang,et al.  Non-Standard Models for Formal Logics , 1950, J. Symb. Log..

[99]  David Ripley Naive Set Theory and Nontransitive Logic , 2015, Rev. Symb. Log..

[100]  Leon Horsten,et al.  Reflecting on Absolute Infinity , 2016 .

[101]  Peter M. Sullivan HOW DID FREGE FALL INTO THE CONTRADICTION , 2007 .

[102]  Sally Haslanger,et al.  Gender and Race: (What) Are They? (What) Do We Want Them To Be? , 2000 .

[103]  John R. Steel,et al.  A proof of projective determinacy , 1989 .

[104]  Renatus Ziegler,et al.  Finsler Set Theory: Platonism and Circularity , 1996 .

[105]  Theodore Hailperin,et al.  A set of axioms for logic , 1944, Journal of Symbolic Logic.

[106]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[107]  Øystein Linnebo,et al.  DUMMETT ON INDEFINITE EXTENSIBILITY , 2018, Philosophical Issues.

[108]  Steve Awodey An Answer to Hellman's Question: ‘Does Category Theory Provide a Framework for Mathematical Structuralism?’† , 2004 .

[109]  Alexander Paseau Boolos on the justification of set theory , 2006 .

[110]  Luca Incurvati Maximality Principles in Set Theory , 2016 .

[111]  Charles Parsons Sets and Classes , 1974 .

[112]  A. Urquhart Russell’s zigzag path to the ramified theory of types , 1988 .

[113]  Thomas E. Forster,et al.  THE ITERATIVE CONCEPTION OF SET , 2008, The Review of Symbolic Logic.

[114]  Rohit Parikh,et al.  Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.

[115]  A Weir Naïve set theory is innocent , 1998 .

[116]  Ignacio Jané,et al.  The role of the absolute infinite in Cantor's conception of set , 1995 .

[117]  Graham Priest What If? The Exploration of an Idea , 2017 .

[118]  Donald A. Martin,et al.  Multiple Universes of Sets and Indeterminate Truth Values , 2001 .

[119]  W. Quine Main trends in recent philosophy: two dogmas of empiricism. , 1951 .

[120]  Luca Incurvati,et al.  The Graph Conception of Set , 2014, J. Philos. Log..

[121]  Herbert Meschkowski Probleme des Unendlichen , 1967 .

[122]  Øystein Linnebo,et al.  Hierarchies ontological and ideological , 2012 .

[123]  W. V. Quine,et al.  Unification of universes in set theory , 1956, Journal of Symbolic Logic.

[124]  An argument for Finsler-Aczel set theory , 2000 .

[125]  Solomon Feferman,et al.  Categorical Foundations and Foundations of Category Theory , 1977 .

[126]  E. Zermelo Über Grenzzahlen und Mengenbereiche , 1930 .

[127]  D. Lewis,et al.  New work for a theory of universals , 1983 .

[128]  Tore Fjetland Øgaard,et al.  Prospects for a Naive Theory of Classes , 2017, Notre Dame J. Formal Log..

[129]  W. V. Quine,et al.  On the theory of types , 1938, Journal of Symbolic Logic (JSL).

[130]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[131]  Raymond Turner,et al.  Semantics and property theory , 1988 .

[132]  James Worrell,et al.  On the structure of categories of coalgebras , 2001, Theor. Comput. Sci..