The Naïve Conception
暂无分享,去创建一个
[1] Peter Koellner,et al. On reflection principles , 2009, Ann. Pure Appl. Log..
[2] Ross T. Brady. The Simple Consistency of Naive Set Theory using Metavaluations , 2014, J. Philos. Log..
[3] Morgan Thomas. Approximating Cartesian Closed Categories in NF-Style Set Theories , 2018, J. Philos. Log..
[4] Hao Wang,et al. A Formal System of Logic , 1950, J. Symb. Log..
[5] Solomon Feferman,et al. FOUNDATIONS OF UNLIMITED CATEGORY THEORY: WHAT REMAINS TO BE DONE , 2012, The Review of Symbolic Logic.
[6] R. Cameron. Turtles all the Way Down: Regress, Priority and Fundamentality , 2007 .
[7] G. Uzquiano. Modality and Paradox , 2015 .
[8] Paul Bernays,et al. On the Problem of Schemata of Infinity in Axiomatic Set Theory , 1976 .
[9] Nick Thomas. Expressive Limitations of naïve Set Theory in LP and minimally Inconsistent LP , 2014, Rev. Symb. Log..
[10] Salvatore Florio. Unrestricted Quantification: Unrestricted Quantification , 2014 .
[11] Penelope Maddy,et al. Believing the axioms. I , 1988, Journal of Symbolic Logic.
[12] K. Fine. XIV—Ontological Dependence , 1995 .
[13] Vann McGee,et al. How We Learn Mathematical Language , 1997 .
[14] GABRIEL UZQUIANO,et al. A NEGLECTED RESOLUTION OF RUSSELL’S PARADOX OF PROPOSITIONS , 2015, The Review of Symbolic Logic.
[15] Kurt Gödel,et al. What is Cantor's Continuum Problem? , 1947 .
[16] Ross T. Brady,et al. Depth relevance of some paraconsistent logics , 1984 .
[17] A. Levy,et al. Principles of partial reflection in the set theories of Zermelo and Ackermann , 1961 .
[18] E. J. Lowe,et al. What is a Criterion of Identity , 1989 .
[19] Harvey M. Friedman,et al. Higher set theory and mathematical practice , 1971 .
[20] W. W. Tatt. Godel's Unpublished Papers on Foundations of Mathematics , 2001 .
[21] Luca Incurvati,et al. ON ADOPTING KRIPKE SEMANTICS IN SET THEORY , 2008, The Review of Symbolic Logic.
[22] Øystein Linnebo,et al. Category theory as an autonomous foundation , 2011 .
[23] Thomas E. Forster. ZF + 'Every set is the same size as a wellfounded set' , 2003, J. Symb. Log..
[24] Penelope Maddy,et al. Defending the Axioms , 2011 .
[25] Zach Weber,et al. Extensionality and Restriction in Naive Set Theory , 2010, Stud Logica.
[26] Christopher Menzel,et al. Wide Sets, ZFCU, and the Iterative Conception , 2014 .
[27] L. Incurvati,et al. How to be a minimalist about sets , 2012 .
[28] Donald L. M. Baxter. Identity in the Loose and Popular Sense , 1988 .
[29] Jonathan Lear. Sets and Semantics , 1977 .
[30] Federico De Marchi,et al. Non-well-founded trees in categories , 2007, Ann. Pure Appl. Log..
[31] W. Quine. Reply to D. A. Martin , 1970 .
[32] Colin McLarty. Failure of Cartesian Closedness in NF , 1992, J. Symb. Log..
[33] Jaegwon Kim. Causation, Nomic Subsumption, and the Concept of Event , 1973 .
[34] W. V. Quine,et al. On Cantor's theorem , 1937, Journal of Symbolic Logic.
[35] E. Lowe. Sortals and the Individuation of Objects , 2007 .
[36] Øystein Linnebo,et al. Pluralities and sets , 2010 .
[37] E. Specker. The Axiom of Choice in Quine's New Foundations for Mathematical Logic. , 1953, Proceedings of the National Academy of Sciences of the United States of America.
[38] Jan J. M. M. Rutten,et al. Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..
[39] Andrew Bacon,et al. Non-classical Metatheory for Non-classical Logics , 2013, J. Philos. Log..
[40] Carol E. Cleland. On the individuation of events , 1991, Synthese.
[41] Achille C. Varzi. The Extensionality of Parthood and Composition , 2008 .
[42] Aaron Cotnoir,et al. Composition as Identity , 2014 .
[43] Klaus Gloede,et al. Reflection Principles and Indescrib Ability , 1976 .
[44] P. Finsler,et al. ber die Grundlegung der Mengenlehre: Erster Teil. Die Mengen und ihre Axiome , 1926 .
[45] H. B. Curry. The inconsistency of certain formal logics , 1942, Journal of Symbolic Logic.
[46] L. Horsten. Impredicative Identity Criteria , 2010 .
[47] John P. Burgess,et al. E Pluribus Unum: Plural Logic and Set Theory , 2004 .
[48] G. Kreisel. Informal Rigour and Completeness Proofs , 1967 .
[49] Wilhelm Ackermann,et al. Zur Axiomatik der Mengenlehre , 1956 .
[50] Allen P. Hazen,et al. Relevant Restricted Quantification , 2006, J. Philos. Log..
[51] L. Incurvati,et al. Maximally Consistent Sets of Instances of Naive Comprehension , 2017 .
[52] Salvatore Florio,et al. WHAT RUSSELL SHOULD HAVE SAID TO BURALI–FORTI , 2017, The Review of Symbolic Logic.
[53] Zach Weber. Transfinite numbers in Paraconsistent Set Theory , 2010, Rev. Symb. Log..
[54] Donald A. Martin,et al. Set Theory and Its Logic. , 1966 .
[55] C. Ward Henson. Type-Raising Operations on Cardinal and Ordinal Numbers in Quine's "New Foundations" , 1973, J. Symb. Log..
[56] Keith Hossack,et al. Sets and Plural Comprehension , 2014, J. Philos. Log..
[57] Keith Devlin,et al. The Joy of Sets , 1993 .
[58] Gabriel Uzquiano,et al. Well- and Non-Well-Founded Fregean Extensions , 2004, J. Philos. Log..
[59] Colin McLarty. Anti-foundation and self-reference , 1993, J. Philos. Log..
[60] Thomas Schindler,et al. Classes, why and how , 2019 .
[61] James Ladyman,et al. Does Homotopy Type Theory Provide a Foundation for Mathematics? , 2018, The British Journal for the Philosophy of Science.
[62] Alex Oliver,et al. Logic, Mathematics and Philosophy , 2000, The British Journal for the Philosophy of Science.
[63] Stewart Shapiro,et al. New V, ZF, and Abstraction , 1999 .
[64] R. Trueman. The concept horse with no name , 2015 .
[65] Alexandru Baltag,et al. STS: A Structural Theory of Sets , 1999, Log. J. IGPL.
[66] Nino B. Cocchiarella,et al. Conceptual realism versus Quine on classes and higher-order logic , 2004, Synthese.
[67] J. Dunn,et al. Curry's paradox , 1979 .
[68] S. Pollard. Plural quantification and the axiom of choice , 1988 .
[69] Gabriel Uzquiano. Models of second-order Zermelo set theory , 1999, Bull. Symb. Log..
[70] Nino B. Cocchiarella,et al. Frege's double correlation thesis and quine's set theories NF and ML , 1985, J. Philos. Log..
[71] George Boolos,et al. BASIC LAW (V) , 1993 .
[72] Vann McGee,et al. XIII—Two Problems with Tarski's Theory of Consequence , 1992 .
[73] Alan Weir. Naïve set theory, paraconsistency and indeterminacy: Part II , 1999 .
[74] Greg Restall. A Note on Naive Set Theory in LP , 1992, Notre Dame J. Formal Log..
[75] Graham Priest,et al. The logic of paradox , 1979, J. Philos. Log..
[76] Joseph R. Shoenfield. The axioms of set theory , 1977 .
[77] Timothy Smiley,et al. WHAT ARE SETS AND WHAT ARE THEY FOR , 2006 .
[78] Penelope Maddy,et al. Set theoretic naturalism , 1996, Journal of Symbolic Logic.
[79] Aaron Cotnoir,et al. Anti‐Symmetry and Non‐Extensional Mereology , 2010 .
[80] A. R. D. Mathias. Slim Models of Zermelo Set Theory , 2001, J. Symb. Log..
[81] Gabriel Uzquiano,et al. Toward a Theory of Second-Order Consequence , 1999, Notre Dame J. Formal Log..
[82] Zach Weber. Notes on Inconsistent Set Theory , 2013, Paraconsistency: Logic and Applications.
[83] Von Kurt Gödel,et al. ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .
[84] G. Boolos,et al. The Iterative Conception of Set , 1971 .
[85] Øystein Linnebo,et al. Structuralism and the notion of dependence , 2007 .
[86] Jan Rutten,et al. On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces , 1998, Mathematical Structures in Computer Science.
[87] Marcel Crabbé. Reassurance for the Logic of Paradox , 2011, Rev. Symb. Log..
[88] Graham Priest,et al. Minimally inconsistent LP , 1991, Stud Logica.
[89] Zach Weber. Transfinite Cardinals in Paraconsistent Set Theory , 2012, Rev. Symb. Log..
[90] Lieven Decock. Trading Ontology for Ideology , 2002 .
[91] Azriel Lévy. AXIOM SCHEMATA OF STRONG INFINITY IN AXIOMATIC SET THEORY , 1960 .
[92] M. Randall Holmes,et al. Strong axioms of infinity in NFU , 2001, Journal of Symbolic Logic.
[93] J. Barkley Rosser,et al. The Burali-Forti paradox , 1942, Journal of Symbolic Logic.
[94] E. Lowe. One-level versus two-level identity criteria , 1991 .
[95] Timothy Williamson,et al. Never say never , 1994 .
[96] Stewart Shapiro. Foundations of Mathematics: Metaphysics, Epistemology, Structure , 2004 .
[97] Willard Van Orman Quine,et al. New Foundations for Mathematical Logic , 1937 .
[98] Hao Wang,et al. Non-Standard Models for Formal Logics , 1950, J. Symb. Log..
[99] David Ripley. Naive Set Theory and Nontransitive Logic , 2015, Rev. Symb. Log..
[100] Leon Horsten,et al. Reflecting on Absolute Infinity , 2016 .
[101] Peter M. Sullivan. HOW DID FREGE FALL INTO THE CONTRADICTION , 2007 .
[102] Sally Haslanger,et al. Gender and Race: (What) Are They? (What) Do We Want Them To Be? , 2000 .
[103] John R. Steel,et al. A proof of projective determinacy , 1989 .
[104] Renatus Ziegler,et al. Finsler Set Theory: Platonism and Circularity , 1996 .
[105] Theodore Hailperin,et al. A set of axioms for logic , 1944, Journal of Symbolic Logic.
[106] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .
[107] Øystein Linnebo,et al. DUMMETT ON INDEFINITE EXTENSIBILITY , 2018, Philosophical Issues.
[108] Steve Awodey. An Answer to Hellman's Question: ‘Does Category Theory Provide a Framework for Mathematical Structuralism?’† , 2004 .
[109] Alexander Paseau. Boolos on the justification of set theory , 2006 .
[110] Luca Incurvati. Maximality Principles in Set Theory , 2016 .
[111] Charles Parsons. Sets and Classes , 1974 .
[112] A. Urquhart. Russell’s zigzag path to the ramified theory of types , 1988 .
[113] Thomas E. Forster,et al. THE ITERATIVE CONCEPTION OF SET , 2008, The Review of Symbolic Logic.
[114] Rohit Parikh,et al. Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.
[115] A Weir. Naïve set theory is innocent , 1998 .
[116] Ignacio Jané,et al. The role of the absolute infinite in Cantor's conception of set , 1995 .
[117] Graham Priest. What If? The Exploration of an Idea , 2017 .
[118] Donald A. Martin,et al. Multiple Universes of Sets and Indeterminate Truth Values , 2001 .
[119] W. Quine. Main trends in recent philosophy: two dogmas of empiricism. , 1951 .
[120] Luca Incurvati,et al. The Graph Conception of Set , 2014, J. Philos. Log..
[121] Herbert Meschkowski. Probleme des Unendlichen , 1967 .
[122] Øystein Linnebo,et al. Hierarchies ontological and ideological , 2012 .
[123] W. V. Quine,et al. Unification of universes in set theory , 1956, Journal of Symbolic Logic.
[124] An argument for Finsler-Aczel set theory , 2000 .
[125] Solomon Feferman,et al. Categorical Foundations and Foundations of Category Theory , 1977 .
[126] E. Zermelo. Über Grenzzahlen und Mengenbereiche , 1930 .
[127] D. Lewis,et al. New work for a theory of universals , 1983 .
[128] Tore Fjetland Øgaard,et al. Prospects for a Naive Theory of Classes , 2017, Notre Dame J. Formal Log..
[129] W. V. Quine,et al. On the theory of types , 1938, Journal of Symbolic Logic (JSL).
[130] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .
[131] Raymond Turner,et al. Semantics and property theory , 1988 .
[132] James Worrell,et al. On the structure of categories of coalgebras , 2001, Theor. Comput. Sci..