Sequencing flow-sorted short arm of Haynaldia villosa chromosome 4V provides insights into its molecular structure and virtual gene order

[1]  Yufeng Wu,et al.  Development of intron targeting (IT) markers specific for chromosome arm 4VS of Haynaldia villosa by chromosome sorting and next-generation sequencing , 2017, BMC Genomics.

[2]  J. Doležel,et al.  Multiple displacement amplification of the DNA from single flow-sorted plant chromosome. , 2015, The Plant journal : for cell and molecular biology.

[3]  Bernardo J. Clavijo,et al.  New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing , 2015, Plant science : an international journal of experimental plant biology.

[4]  Karl G. Kugler,et al.  chromoWIZ: a web tool to query and visualize chromosome-anchored genes from cereal and model genomes , 2014, BMC Plant Biology.

[5]  J. Batley,et al.  A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome , 2014, Science.

[6]  Hadi Quesneville,et al.  Structural and functional partitioning of bread wheat chromosome 3B , 2014, Science.

[7]  J. Doležel,et al.  Common Wheat Chromosome 5B Composition Analysis Using Low‐Coverage 454 Sequencing , 2014 .

[8]  H. Kanamori,et al.  Next-Generation Survey Sequencing and the Molecular Organization of Wheat Chromosome 6B , 2013, DNA research : an international journal for rapid publication of reports on genes and genomes.

[9]  Uwe Scholz,et al.  Reticulate Evolution of the Rye Genome[W][OPEN] , 2013, Plant Cell.

[10]  Jin Xiao,et al.  Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa , 2013, Theoretical and Applied Genetics.

[11]  Mihaela M. Martis,et al.  A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat , 2013, Genome Biology.

[12]  Mihaela M. Martis,et al.  A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor , 2013, Proceedings of the National Academy of Sciences.

[13]  A. Ghafoor,et al.  Flow Karyotyping of Wheat Addition Line “T240” with a Haynaldia villosa 6VS Telosome , 2013, Plant Molecular Biology Reporter.

[14]  Wenlong Yang,et al.  Draft genome of the wheat A-genome progenitor Triticum urartu , 2013, Nature.

[15]  Yadan Luo,et al.  Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation , 2013, Nature.

[16]  V. Grosso,et al.  FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy , 2013, PloS one.

[17]  P. Kersey,et al.  Analysis of the bread wheat genome using whole genome shotgun sequencing , 2012, Nature.

[18]  D. Spooner,et al.  All biological disciplines that depend on DNA sequence data have been fundamentally changed in the last few years, driven by the development and emergence of next-generation sequenc- , 2012 .

[19]  Gabriel Dorado,et al.  Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. , 2012, The Plant journal : for cell and molecular biology.

[20]  T. Flutre,et al.  TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes , 2012, Front. Plant Sci..

[21]  Uwe Scholz,et al.  Unlocking the Barley Genome by Chromosomal and Comparative Genomics[W][OA] , 2011, Plant Cell.

[22]  G. Valle,et al.  First Survey of the Wheat Chromosome 5A Composition through a Next Generation Sequencing Approach , 2010, PloS one.

[23]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[24]  Uwe Scholz,et al.  Gene Content and Virtual Gene Order of Barley Chromosome 1H1[C][W][OA] , 2009, Plant Physiology.

[25]  J. Messing,et al.  The 'inner circle' of the cereal genomes. , 2009, Current opinion in plant biology.

[26]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[27]  E. Mardis Next-generation DNA sequencing methods. , 2008, Annual review of genomics and human genetics.

[28]  Pascal Condamine,et al.  Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley , 2008, BMC Genomics.

[29]  Jan Bartoš,et al.  Chromosome-based genomics in the cereals , 2007, Chromosome Research.

[30]  A. Grądzielewska The genus Dasypyrum—part 2. Dasypyrum villosum—a wild species used in wheat improvement , 2006, Euphytica.

[31]  Lin Fang,et al.  WEGO: a web tool for plotting GO annotations , 2006, Nucleic Acids Res..

[32]  M. Abenavoli,et al.  The Inhibitory Effects of Coumarin on the Germination of Durum Wheat (Triticum turgidum ssp. durum, cv. Simeto) Seeds , 2006, Journal of Chemical Ecology.

[33]  Xiue Wang,et al.  Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS⋅4DL conferring resistance to wheat spindle streak mosaic virus , 2005, Euphytica.

[34]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[35]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[36]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[37]  B. Gill,et al.  Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH. , 2004, Genome.

[38]  Miftahudin,et al.  Analysis of Expressed Sequence Tag Loci on Wheat Chromosome Group 4 , 2004, Genetics.

[39]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene finding in eukaryotes , 2004, Nucleic Acids Res..

[40]  J. Doležel,et al.  Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. , 2003, Genome.

[41]  J. Doležel,et al.  Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.) , 2002, Theoretical and Applied Genetics.

[42]  J. Doležel,et al.  Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). , 2000, Genetics.

[43]  K. Devos,et al.  Genome Relationships: The Grass Model in Current Research , 2000, Plant Cell.

[44]  P. Christou,et al.  ‘Green revolution’ genes encode mutant gibberellin response modulators , 1999, Nature.

[45]  M. Ciaffi,et al.  Chromosomal assignment of gene sequences coding for protein disulphide isomerase (PDI) in wheat , 1999, Theoretical and Applied Genetics.

[46]  L. Qi,et al.  Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew , 1995, Theoretical and Applied Genetics.

[47]  J. Dvorak,et al.  Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination , 1995, Theoretical and Applied Genetics.

[48]  T. Murray,et al.  A New Source of Resistance to Pseudocercosporella herpotrichoides, Cause of Eyespot Disease of Wheat, Located on Chromosome 4V of Dasypyrum villosum , 1994 .

[49]  R. Koebner,et al.  Chromosomal control of the aminopeptidases of wheat and its close relatives , 1989, Theoretical and Applied Genetics.

[50]  C. Qualset,et al.  Chromosomal location of isozyme and seed storage protein genes in Dasypyrum villosum (L.) Candargy , 1987, Theoretical and Applied Genetics.

[51]  Jan Vrána,et al.  Advances in plant chromosome genomics. , 2014, Biotechnology advances.