Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Solving General Shallow Wave Equations on Surfaces

We propose a new framework for solving General Shallow Wave Equations (GSWE) in order to efficiently simulate water flows on solid surfaces under shallow wave assumptions. Within this framework, we develop implicit schemes for solving the external forces applied to water, including gravity and surface tension. We also present a two-way coupling method to model interactions between fluid and floating rigid objects. Water flows in this system can be simulated not only on planar surfaces by using regular grids, but also on curved surfaces directly without surface parametrization. The experiments show that our system is fast, stable, physically sound, and straightforward to implement on both CPUs and GPUs. It is capable of simulating a variety of water effects including: shallow waves, water drops, rivulets, capillary events and fluid/floating rigid body coupling. Because the system is fast, we can also achieve real-time water drop control and shape design.

[1]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[2]  Adrien Treuille,et al.  Keyframe control of smoke simulations , 2003, ACM Trans. Graph..

[3]  Chang-Hun Kim,et al.  Animation of Bubbles in Liquid , 2003, Comput. Graph. Forum.

[4]  Marie-Paule Cani,et al.  Interactive animation of ocean waves , 2002, SCA '02.

[5]  Adrien Treuille,et al.  Fluid control using the adjoint method , 2004, ACM Trans. Graph..

[6]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[7]  Z. Popovic,et al.  Fluid control using the adjoint method , 2004, SIGGRAPH 2004.

[8]  Michiel van de Panne,et al.  A numerically efficient and stable algorithm for animating water waves , 2002, The Visual Computer.

[9]  P. Heckbert Fast Surface Particle Repulsion , 1997 .

[10]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, SIGGRAPH 2005.

[11]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[12]  Ignacio Llamas,et al.  Advections with Significantly Reduced Dissipation and Diffusion , 2007, IEEE Transactions on Visualization and Computer Graphics.

[13]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[14]  Ken Museth,et al.  Dynamic Tubular Grid: An Efficient Data Structure and Algorithms for High Resolution Level Sets , 2006, J. Sci. Comput..

[15]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, SIGGRAPH 2006.

[16]  E. Guendelman,et al.  Efficient simulation of large bodies of water by coupling two and three dimensional techniques , 2006, SIGGRAPH 2006.

[17]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[18]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.

[19]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[20]  Charles E. Hughes,et al.  Real-Time Fluid Simulation in a Dynamic Virtual Environment , 1997, IEEE Computer Graphics and Applications.

[21]  Gavin S. P. Miller,et al.  Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.

[22]  Dani Lischinski,et al.  Target-driven smoke animation , 2004, SIGGRAPH 2004.

[23]  Ken Museth,et al.  Hierarchical RLE level set: A compact and versatile deformable surface representation , 2006, TOGS.

[24]  Z. Popovic,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH 2006.

[25]  Dani Lischinski,et al.  Target-driven smoke animation , 2004, ACM Trans. Graph..

[26]  Yizhou Yu,et al.  Inviscid and incompressible fluid simulation on triangle meshes , 2004, Comput. Animat. Virtual Worlds.

[27]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[28]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..

[29]  Ronald Fedkiw,et al.  Efficient simulation of large bodies of water by coupling two and three dimensional techniques , 2006, ACM Trans. Graph..

[30]  Huamin Wang,et al.  Water drops on surfaces , 2005, ACM Trans. Graph..

[31]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[32]  Pierre Poulin,et al.  Simulating the Flow of Liquid Droplets , 1998, Graphics Interface.

[33]  Jessica K. Hodgins,et al.  Dynamic simulation of splashing fluids , 1995, Proceedings Computer Animation'95.

[34]  Dimitris N. Metaxas,et al.  Animation and control of breaking waves , 2004, SCA '04.

[35]  Eitan Grinspun,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, SIGGRAPH Courses.

[36]  Jonathan M. Cohen,et al.  Practical simulation of surface tension flows , 2004, SIGGRAPH '04.

[37]  Frank Losasso,et al.  Simulating water and smoke with an octree data structure , 2004, SIGGRAPH 2004.

[38]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[39]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[40]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[41]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[42]  Lin Shi,et al.  Controllable smoke animation with guiding objects , 2005, TOGS.

[43]  G. Turk,et al.  Water drops on surfaces , 2005, SIGGRAPH 2005.

[44]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[45]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, ACM Trans. Graph..

[46]  Wim S. J. Uijttewaal,et al.  Shallow Flows : Research Presented at the International Symposium on Shallow Flows, Delft, Netherlands, 2003 , 2004 .

[47]  Hyeong-Seok Ko,et al.  Stable but nondissipative water , 2005, TOGS.

[48]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2007, TOGS.

[49]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..