Photosystem II- and photosystem I-inhibitor herbicides-driven changes in the dynamics of photosynthetic energy dissipation of Conyza spp.
暂无分享,去创建一个
J. Borella | Jessica Ferreira Lourenco Leal | A. Langaro | A. Machado | C. F. de Pinho | F. R. de Souza | Amanda Dos Santos Souza | Rúbia de Moura Carneiro | Gabriela de Souza da Silva | Francisco Freire de Oliveira Junior
[1] J. Borella,et al. 2,4‐Dichlorophenoxyacetic‐N‐methylmethanamine and haloxyfop‐P‐methyl interaction: Sequential and interval applications to effectively control sourgrass and fleabane , 2020 .
[2] M. F. G. F. Silva,et al. Herbicide Resistance in Brazil: Status, Impacts, and Future Challenges , 2020 .
[3] L. Zobiole,et al. First evidence of multiple resistance of Sumatran Fleabane (Conyza sumatrensis (Retz.) E.Walker) to five- mode-of-action herbicides , 2019, Australian Journal of Crop Science.
[4] A. Fernie,et al. Metabolomics for understanding stomatal movements , 2019, Theoretical and Experimental Plant Physiology.
[5] C. Pimentel,et al. Photosynthetic Potential and Productivity of Common Beans under Herbicide Effect , 2018, Planta Daninha.
[6] P. Singh,et al. Assessment of yield and economic losses in agriculture due to weeds in India , 2018 .
[7] M. Farooq,et al. Salinity reduces 2,4-D efficacy in Echinochloa crusgalli by affecting redox balance, nutrient acquisition, and hormonal regulation , 2018, Protoplasma.
[8] Qing X. Li,et al. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. , 2017, Environment international.
[9] P. Sikkema,et al. Potential Corn Yield Losses from Weeds in North America , 2016, Weed Technology.
[10] Albert J. Fischer,et al. Leaf chlorophyll fluorescence discriminates herbicide resistance in Echinochloa species , 2016 .
[11] Shariq I. Sherwani,et al. Modes of Action of Different Classes of Herbicides , 2015 .
[12] C. Maciel,et al. Eficiência do cloransulam-metílico no controle em pós-emergência de Conyza bonariensis na cultura da soja RR® , 2015 .
[13] E. D. Velini,et al. Detecção da tolerância de diferentes espécies de capim-colchão a herbicidas inibidores do fotossistema II utilizando a técnica da fluorescência , 2015 .
[14] M. A. Bacarin,et al. Photosynthesis of soybean under the action of a photosystem II-inhibiting herbicide , 2014, Acta Physiologiae Plantarum.
[15] J. Serôdio,et al. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues , 2014, Photosynthesis Research.
[16] L. Fraceto,et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. , 2014, Journal of hazardous materials.
[17] M. Renton,et al. Orientation and speed of wind gusts causing abscission of wind-dispersed seeds influences dispersal distance , 2014 .
[18] M. A. Bacarin,et al. Chlorophyll a fluorescence in rice plants exposed of herbicides of group imidazolinone , 2014 .
[19] Alexander Menegat,et al. Chlorophyll fluorescence imaging: a new method for rapid detection of herbicide resistance in Alopecurus myosuroides , 2013 .
[20] Franck E. Dayan,et al. Chlorophyll fluorescence as a marker for herbicide mechanisms of action , 2012 .
[21] Govindjee,et al. On the Relation between the Kautsky Effect (chlorophyll a Fluorescence Induction) and Photosystem Ii: Basics and Applications of the Ojip Fluorescence Transient Q , 2022 .
[22] Adilson Pacheco de Souza,et al. Trocas gasosas e ciclo fotossintético da figueira 'Roxo de Valinhos' , 2010 .
[23] S. Powles,et al. Evolution in action: plants resistant to herbicides. , 2010, Annual review of plant biology.
[24] N. Baker. Chlorophyll fluorescence: a probe of photosynthesis in vivo. , 2008, Annual review of plant biology.
[25] L. Rörig,et al. Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum. , 2008, Toxicology in vitro : an international journal published in association with BIBRA.
[26] W. E. Dyer,et al. Plant Response to Herbicides , 2007 .
[27] D. Tan,et al. Germination, persistence, and emergence of flaxleaf fleabane (Conyza bonariensis [L.] Cronquist) , 2007 .
[28] A. Trebst. Inhibitors in the functional dissection of the photosynthetic electron transport system , 2007, Photosynthesis Research.
[29] R. Strasser,et al. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering , 2007 .
[30] R. Strasser,et al. Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. , 2005, Biochimica et biophysica acta.
[31] D. Scott,et al. Paraquat in Perspective , 2004 .
[32] R. Bromilow. Paraquat and sustainable agriculture. , 2004, Pest management science.
[33] N. Baker,et al. Rapid, Noninvasive Screening for Perturbations of Metabolism and Plant Growth Using Chlorophyll Fluorescence Imaging1 , 2003, Plant Physiology.
[34] K. Niyogi,et al. Non-photochemical quenching. A response to excess light energy. , 2001, Plant physiology.
[35] F. Hess. Light-dependent herbicides: an overview. , 2000 .
[36] R. Strasser,et al. Measuring fast fluorescence transients to address environmental questions: the JIP-test , 1995 .
[37] Christine H. Foyer,et al. Photooxidative stress in plants , 1994 .
[38] S. Duke,et al. Bioactivity of Herbicides , 2011 .
[39] R. Strasser,et al. In vivo Assessment of Stress Impact on Plant's Vitality: Applications in Detecting and Evaluating the Beneficial Role of Mycorrhization on Host Plants , 2008 .
[40] R. Strasser,et al. Analysis of the Chlorophyll a Fluorescence Transient , 2004 .
[41] G. Krause,et al. Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .