Photosystem II- and photosystem I-inhibitor herbicides-driven changes in the dynamics of photosynthetic energy dissipation of Conyza spp.

[1]  J. Borella,et al.  2,4‐Dichlorophenoxyacetic‐N‐methylmethanamine and haloxyfop‐P‐methyl interaction: Sequential and interval applications to effectively control sourgrass and fleabane , 2020 .

[2]  M. F. G. F. Silva,et al.  Herbicide Resistance in Brazil: Status, Impacts, and Future Challenges , 2020 .

[3]  L. Zobiole,et al.  First evidence of multiple resistance of Sumatran Fleabane (Conyza sumatrensis (Retz.) E.Walker) to five- mode-of-action herbicides , 2019, Australian Journal of Crop Science.

[4]  A. Fernie,et al.  Metabolomics for understanding stomatal movements , 2019, Theoretical and Experimental Plant Physiology.

[5]  C. Pimentel,et al.  Photosynthetic Potential and Productivity of Common Beans under Herbicide Effect , 2018, Planta Daninha.

[6]  P. Singh,et al.  Assessment of yield and economic losses in agriculture due to weeds in India , 2018 .

[7]  M. Farooq,et al.  Salinity reduces 2,4-D efficacy in Echinochloa crusgalli by affecting redox balance, nutrient acquisition, and hormonal regulation , 2018, Protoplasma.

[8]  Qing X. Li,et al.  Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. , 2017, Environment international.

[9]  P. Sikkema,et al.  Potential Corn Yield Losses from Weeds in North America , 2016, Weed Technology.

[10]  Albert J. Fischer,et al.  Leaf chlorophyll fluorescence discriminates herbicide resistance in Echinochloa species , 2016 .

[11]  Shariq I. Sherwani,et al.  Modes of Action of Different Classes of Herbicides , 2015 .

[12]  C. Maciel,et al.  Eficiência do cloransulam-metílico no controle em pós-emergência de Conyza bonariensis na cultura da soja RR® , 2015 .

[13]  E. D. Velini,et al.  Detecção da tolerância de diferentes espécies de capim-colchão a herbicidas inibidores do fotossistema II utilizando a técnica da fluorescência , 2015 .

[14]  M. A. Bacarin,et al.  Photosynthesis of soybean under the action of a photosystem II-inhibiting herbicide , 2014, Acta Physiologiae Plantarum.

[15]  J. Serôdio,et al.  Frequently asked questions about in vivo chlorophyll fluorescence: practical issues , 2014, Photosynthesis Research.

[16]  L. Fraceto,et al.  Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. , 2014, Journal of hazardous materials.

[17]  M. Renton,et al.  Orientation and speed of wind gusts causing abscission of wind-dispersed seeds influences dispersal distance , 2014 .

[18]  M. A. Bacarin,et al.  Chlorophyll a fluorescence in rice plants exposed of herbicides of group imidazolinone , 2014 .

[19]  Alexander Menegat,et al.  Chlorophyll fluorescence imaging: a new method for rapid detection of herbicide resistance in Alopecurus myosuroides , 2013 .

[20]  Franck E. Dayan,et al.  Chlorophyll fluorescence as a marker for herbicide mechanisms of action , 2012 .

[21]  Govindjee,et al.  On the Relation between the Kautsky Effect (chlorophyll a Fluorescence Induction) and Photosystem Ii: Basics and Applications of the Ojip Fluorescence Transient Q , 2022 .

[22]  Adilson Pacheco de Souza,et al.  Trocas gasosas e ciclo fotossintético da figueira 'Roxo de Valinhos' , 2010 .

[23]  S. Powles,et al.  Evolution in action: plants resistant to herbicides. , 2010, Annual review of plant biology.

[24]  N. Baker Chlorophyll fluorescence: a probe of photosynthesis in vivo. , 2008, Annual review of plant biology.

[25]  L. Rörig,et al.  Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom Skeletonema costatum. , 2008, Toxicology in vitro : an international journal published in association with BIBRA.

[26]  W. E. Dyer,et al.  Plant Response to Herbicides , 2007 .

[27]  D. Tan,et al.  Germination, persistence, and emergence of flaxleaf fleabane (Conyza bonariensis [L.] Cronquist) , 2007 .

[28]  A. Trebst Inhibitors in the functional dissection of the photosynthetic electron transport system , 2007, Photosynthesis Research.

[29]  R. Strasser,et al.  Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering , 2007 .

[30]  R. Strasser,et al.  Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. , 2005, Biochimica et biophysica acta.

[31]  D. Scott,et al.  Paraquat in Perspective , 2004 .

[32]  R. Bromilow Paraquat and sustainable agriculture. , 2004, Pest management science.

[33]  N. Baker,et al.  Rapid, Noninvasive Screening for Perturbations of Metabolism and Plant Growth Using Chlorophyll Fluorescence Imaging1 , 2003, Plant Physiology.

[34]  K. Niyogi,et al.  Non-photochemical quenching. A response to excess light energy. , 2001, Plant physiology.

[35]  F. Hess Light-dependent herbicides: an overview. , 2000 .

[36]  R. Strasser,et al.  Measuring fast fluorescence transients to address environmental questions: the JIP-test , 1995 .

[37]  Christine H. Foyer,et al.  Photooxidative stress in plants , 1994 .

[38]  S. Duke,et al.  Bioactivity of Herbicides , 2011 .

[39]  R. Strasser,et al.  In vivo Assessment of Stress Impact on Plant's Vitality: Applications in Detecting and Evaluating the Beneficial Role of Mycorrhization on Host Plants , 2008 .

[40]  R. Strasser,et al.  Analysis of the Chlorophyll a Fluorescence Transient , 2004 .

[41]  G. Krause,et al.  Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .